Changes

From kogic.kr
m
no edit summary
 
== Contents ==
 
 [[[hide|hide]]] 
 
*[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.ED.95.9C.EA.B5.AD_.EC.B0.B8.EC.A1.B0_.EA.B2.8C.EB.86.88.EC.9D.80_.EB.AF.BC.EC.A1.B1.EC.A0.81.EC.9C.BC.EB.A1.9C_.EA.B4.80.EB.A0.A8.EC.84.B1.EC.9D.B4_.EC.9E.88.EB.8A.94_.EA.B3.B5.EA.B0.90.EB.8C.80.EC.9D.B4.EB.A9.B0.2C_.EA.B0.9C.EC.9D.B8_.EC.B0.B8.EC.A1.B0_.EA.B2.8C.EB.86.88.EC.9D.84_.ED.96.A5.ED.95.9C_.EB.8B.A8.EA.B3.84.EC.9D.B4.EB.8B.A4. 1한국 참조 게놈은 민족적으로 관련성이 있는 공감대이며, 개인 참조 게놈을 향한 단계이다.]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.EC.B4.88.EB.A1.9D 1.1초록]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.EB.8F.84.EC.9E.85 1.2도입]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.EA.B2.B0.EA.B3.BC 1.3결과]
***[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.EC.9A.B0.EB.A6.AC.EB.8A.94_16_.EB.AA.85.EC.9D.98_.ED.95.9C.EA.B5.AD.EC.9D.B8_.EC.9E.90.EC.9B.90_.EB.B4.89.EC.82.AC.EC.9E.90.EB.93.A4.EC.9D.84_.EB.AA.A8.EC.A7.91.ED.96.88.EB.8A.94.EB.8D.B0.2C_.EC.9D.B4.EB.93.A4.EC.9D.80_.EA.B2.8C.EB.86.88_.EB.8D.B0.EC.9D.B4.ED.84.B0_.EC.82.AC.EC.9A.A9.EC.97.90_.EB.8C.80.ED.95.9C_.EC.82.AC.EC.A0.84_.EB.8F.99.EC.9D.98_.28.EC.86.8C.EA.B7.9C.EB.AA.A8_.EA.B5.AD.EA.B0.80_.EB.B3.84_.EC.A0.81.EC.9D.91.EC.9D.B4_.EC.9E.88.EB.8A.94_PGP_.ED.94.84.EB.A1.9C.ED.86.A0.EC.BD.9C.EC.9D.84_.EA.B8.B0.EB.B0.98.EC.9C.BC.EB.A1.9C.29.EC.97.90_.EC.84.9C.EB.AA.85.ED.95.98.EA.B3.A0_.EA.B3.B5.EA.B0.9C.EC.A0.81.EC.9C.BC.EB.A1.9C_.EB.B0.9C.ED.91.9C.ED.95.98.EB.8A.94.EB.8D.B0_.EB.8F.99.EC.9D.98.ED.96.88.EB.8B.A4._.EB.A7.90.EC.B4.88_.ED.98.88.EC.95.A1.EC.97.90.EC.84.9C_DNA.EB.A5.BC_.EC.B6.94.EC.B6.9C.ED.95.9C_.ED.9B.84_.28.EB.B3.B4.EC.B6.A9_.ED.91.9C_1.29.2C_.EC.9A.B0.EB.A6.AC.EB.8A.94_Infinium_Omni1_.EC.BF.BC.EB.93.9C_.EC.B9.A9.EC.9D.84_.EC.82.AC.EC.9A.A9.ED.95.98.EC.97.AC_.EA.B0.81_.EC.9E.90.EC.9B.90.EC.9E.90.EB.A5.BC_.EC.9C.A0.EC.A0.84.EC.9E.90.ED.98.95.EC.9C.BC.EB.A1.9C_.EC.A0.9C.EC.9E.91.ED.96.88.EB.8B.A4._HPGMAP_3_.EB.8B.A8.EA.B3.84.EC.9D.98_86_.EA.B0.9C_.EC.9D.BC.EB.B3.B8.EC.96.B4.2C_84_.EA.B0.9C_.EC.A4.91.EA.B5.AD.EC.96.B4.2C_112_.EA.B0.9C_.EB.B0.B1.EC.9D.B8_.EB.B0.8F_113_.EA.B0.9C_.EC.95.84.ED.94.84.EB.A6.AC.EC.B9.B4_.EC.9D.B8_.EC.9C.A0.EC.A0.84.EC.9E.90.ED.98.95_.EB.8D.B0.EC.9D.B4.ED.84.B0_.EB.BF.90.EB.A7.8C_.EC.95.84.EB.8B.88.EB.9D.BC_KPGP_.EB.8D.B0.EC.9D.B4.ED.84.B0.EB.B2.A0.EC.9D.B4.EC.8A.A4.EC.9D.98_.EC.B6.94.EA.B0.80_34_.EA.B0.9C_.EC.A0.84.EC.B2.B4_.EA.B2.8C.EB.86.88_.EC.84.9C.EC.97.B4.EC.9D.84_.EC.82.AC.EC.9A.A9.ED.95.98.EC.97.AC_pairwise_.EC.9C.A0.EC.A0.84.EC.9E.90_.EA.B1.B0.EB.A6.AC.EC.9D.98_.EB.8B.A4.EC.B0.A8.EC.9B.90_.EC.8A.A4.EC.BC.80.EC.9D.BC.EB.A7.81_.ED.94.8C.EB.A1.AF.EC.9D.84_.EA.B5.AC.EC.B6.95.ED.96.88.EB.8B.A4_.28.EC.B0.B8.EC.A1.B0_:_29.3B_.EB.B3.B4.EC.B6.A9.29_.EA.B7.B8.EB.A6.BC_1.29._.ED.95.9C.EA.B5.AD.EC.9D.98_16_.EA.B0.9C_.ED.91.9C.EB.B3.B8.EC.9D.80_.EB.AA.A8.EB.91.90_.EC.9D.B8.EA.B5.AC.EA.B0.80_.EB.B0.80.EC.A7.91.EB.90.98.EC.96.B4_.ED.95.98.EB.82.98.EC.9D.98_.EB.AF.BC.EC.A1.B1_.EC.A7.91.EB.8B.A8.EC.9D.84_.EB.82.98.ED.83.80.EB.82.B8.EB.8B.A4._.EC.9C.A0.EC.A0.84_.EC.A0.81_.EA.B1.B0.EB.A6.AC.EC.9D.98_.EC.A4.91.EC.8B.AC.EC.84.B1.2C_.EC.B0.B8.EA.B0.80.EC.9E.90.EC.9D.98_.EC.97.B0.EB.A0.B9.2C_.EB.B6.80.EB.AA.A8.EC.9D.98_.EC.83.98.ED.94.8C_.EA.B0.80.EC.9A.A9.EC.84.B1.2C_.EC.A7.80.EC.86.8D.EC.A0.81.EC.9D.B8_.ED.98.88.EC.95.A1_.EC.83.98.ED.94.8C_.EA.B8.B0.EC.A6.9D.EC.9D.98_.EA.B0.80.EC.9A.A9.EC.84.B1_.EB.B0.8F_G_.EB.B0.B4.EB.93.9C_.ED.95.B5.ED.98.95.EC.9D.98_.EC.A0.95.EC.83.81_.EC.84.B1.EA.B3.BC_.EA.B0.99.EC.9D.80_.EB.A7.A4.EA.B0.9C_.EB.B3.80.EC.88.98_.EB.AA.A9.EB.A1.9D.EC.9D.84_.EA.B3.A0.EB.A0.A4.ED.95.98.EC.97.AC_.EA.B1.B4.EA.B0.95.ED.95.9C_.EB.82.A8.EC.84.B1_.EA.B8.B0.EC.A6.9D.EC.9E.90.EB.A5.BC_KOREF_S.EB.A1.9C_.EC.84.A0.ED.83.9D.ED.96.88.EB.8B.A4_.28.EB.B3.B4.EC.B6.A9_.EA.B7.B8.EB.A6.BC_2.29._.29._.EC.B0.B8.EA.B3.A0_.EC.9E.90.EB.A3.8C.EB.A5.BC_.EA.B3.B5.EA.B8.89.ED.95.98.EA.B8.B0_.EC.9C.84.ED.95.B4_KOREF_S_.EA.B3.B5.EC.97.AC.EC.9E.90.EC.9D.98_.ED.98.88.EC.95.A1.EC.9C.BC.EB.A1.9C_.EB.B6.88.EB.A9.B8.ED.99.94_.EB.90.9C_.EC.84.B8.ED.8F.AC.EC.A3.BC.EB.A5.BC_.EA.B5.AC.EC.84.B1.ED.95.98.EA.B3.A0_.ED.95.9C.EA.B5.AD_.EC.84.B8.ED.8F.AC.EC.A3.BC_.EC.9D.80.ED.96.89.EC.97.90_.EA.B8.B0.ED.83.81.ED.96.88.EB.8B.A4_.28KCLB.2C_.23_60211.29. 1.3.1우리는 16 명의 한국인 자원 봉사자들을 모집했는데, 이들은 게놈 데이터 사용에 대한 사전 동의 (소규모 국가 별 적응이 있는 PGP 프로토콜을 기반으로)에 서명하고 공개적으로 발표하는데 동의했다. 말초 혈액에서 DNA를 추출한 후 (보충 표 1), 우리는 Infinium Omni1 쿼드 칩을 사용하여 각 자원자를 유전자형으로 제작했다. HPGMAP 3 단계의 86 개 일본어, 84 개 중국어, 112 개 백인 및 113 개 아프리카 인 유전자형 데이터 뿐만 아니라 KPGP 데이터베이스의 추가 34 개 전체 게놈 서열을 사용하여 pairwise 유전자 거리의 다차원 스케일링 플롯을 구축했다 (참조 : 29; 보충) 그림 1). 한국의 16 개 표본은 모두 인구가 밀집되어 하나의 민족 집단을 나타낸다. 유전 적 거리의 중심성, 참가자의 연령, 부모의 샘플 가용성, 지속적인 혈액 샘플 기증의 가용성 및 G 밴드 핵형의 정상 성과 같은 매개 변수 목록을 고려하여 건강한 남성 기증자를 KOREF_S로 선택했다 (보충 그림 2). ). 참고 자료를 공급하기 위해 KOREF_S 공여자의 혈액으로 불멸화 된 세포주를 구성하고 한국 세포주 은행에 기탁했다 (KCLB, # 60211).]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.ED.86.A0.EB.A1.A0 1.4토론]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.EC.97.B0.EA.B5.AC.EB.B0.A9.EB.B2.95 1.5연구방법]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.EC.B6.94.EA.B0.80_.EC.A0.95.EB.B3.B4 1.6추가 정보]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.E2.80.8B.EC.B0.B8.EC.A1.B0 1.7​참조]
**[http://in.kogic.kr/An_ethnically_relevant_consensus_Korean_reference_genome_is_a_step_towards_personal_reference_genomes.#.E2.80.8B.EA.B0.90.EC.82.AC.EC.9D.98_.EB.A7.90 1.8​감사의 말]
= '''한국 참조 게놈은 민족적으로 관련성이 있는 공감대이며, 개인 참조 게놈을 향한 단계이다.''' =
== '''​참조''' ==
<div class="mw-empty-elt">#<br/> Reich, D. et al. . Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009). #*-&nbsp;[httpshttp://doiwww.org/10ncbi.1371/journalnlm.pgennih.1000360 Article] #*[http:gov/pmc/articles/scholar.google.compmc2628742/scholar_lookup?PMC]&title=Reduced%20neutrophil%20count%20in%20people%20of%20African%20descent%20is%20due%20to%20a%20regulatory%20variant%20in%20the%20Duffy%20antigen%20receptor%20for%20chemokines%20genenbsp;-&journal=PLoS%20Genetnbsp;[https://pubmed.ncbi.nlm.nih.&volume=5&publication_year=2009&author=Reich,D Google Scholargov/19180233/ PubMed] #<br/> Green, <br/> Green R. E. et al. . A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). #*-&nbsp;[httpshttp://www.naturencbi.nlm.nih.comgov/pmc/articles/cas-redirectpmc5100745/1:CAS:528:DC%2BC3cXlsFCitbo%3D CASPMC#*&nbsp;-&nbsp;[httphttps://adsabspubmed.harvardncbi.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2010Scinlm.nih..328..710G ADS] #*[https:gov/20448178/doi.orgPubMed]<br/10.1126> <br/science> Sheehan S.1188021 Article] #*[http://scholar, Harris K. & Song Y.googleS.com/scholar_lookup?&title=A%20draft%20sequence%20of%20the%20Neandertal%20genome&journal=Science&volume=328&pages=710-722&publication_year=2010&author=Green,RE Google Scholar] #<br/> Sheehan, S., Harris, K. & Song, Y. S. Estimating variable effective population sizes from multiple genomesEstimating variable effective population sizes from multiple genomes: a sequentially markov conditional sampling distribution approach. Genetics 194, 647–662 (2013). #*-&nbsp;[httpshttp://doiwww.org/10ncbi.1534/geneticsnlm.112nih.149096 Articlegov/pmc/articles/pmc3697970/ PMC#*&nbsp;-&nbsp;[httphttps://scholarpubmed.googlencbi.nlm.com/scholar_lookup?&title=Estimating%20variable%20effective%20population%20sizes%20from%20multiple%20genomes:%20a%20sequentially%20markov%20conditional%20sampling%20distribution%20approach&journal=Genetics&volume=194&pages=647-662&publication_year=2013&author=Sheehan,S&author=Harris,K&author=Song,YS Google Scholarnih.gov/23608192/ PubMed] #<br/> <br/> Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014). #*-&nbsp;[httpshttp://www.naturencbi.comnlm.nih.gov/pmc/articles/cas-redirectpmc4116295/1:CAS:528:DC%2BC2cXhtVais7jI CASPMC#*&nbsp;-&nbsp;[https://doipubmed.org/10ncbi.1038/ngnlm.3015 Articlenih.gov/24952747/ PubMed#*[http:<br/> <br/scholar> Dewey F.googleE.com/scholar_lookup?&title=Inferring%20human%20population%20size%20and%20separation%20history%20from%20multiple%20genome%20sequences&journal=Natet al.%20Genet.&volume=46&pages=919Phased whole-925&publication_year=2014&author=Schiffels,S&author=Durbin,R Google Scholar] #<br/> Dewey, F. E. et al. Phased whole-genome genetic genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet. 7, e1002280 (2011). #*-&nbsp;[httpshttp://www.naturencbi.nlm.nih.comgov/pmc/articles/cas-redirectpmc3174201/1:CAS:528:DC%2BC3MXht1yrur%2FJ CASPMC#*&nbsp;-&nbsp;[httphttps://wwwpubmed.ncbi.nlm.amsnih.orggov/mathscinet-getitem?mr=2833462 MathSciNet21935354/ PubMed]<br/> .<br/> .  #*See all 69 refernences ([https://doipubmed.org/10ncbi.1371/journalnlm.pgennih.1002280 Article] #*[httpgov/27882922/ https://scholarpubmed.googlencbi.com/scholar_lookup?&title=Phased%20whole-genome%20genetic%20risk%20in%20a%20family%20quartet%20using%20a%20major%20allele%20reference%20sequence&journal=PLoS%20Genet.&volume=7&publication_year=2011&author=Dewey,FE Google Scholar] #<br/> Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015). #*[https://doi.org/10.1126/science.aab3761 Article] #*[http://scholar.google.com/scholar_lookup?&title=Global%20diversity,%20population%20stratification,%20and%20selection%20of%20human%20copy-number%20variation&journal=Science&volume=349&publication_year=2015&author=Sudmant,PH Google Scholar] #<br/> Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXhsFCjtLc%3D CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2001Natur.409..860L ADS] #*[https://doi.org/10.1038/35057062 Article] #*[http://scholar.google.com/scholar_lookup?&title=Initial%20sequencing%20and%20analysis%20of%20the%20human%20genome&journal=Nature&volume=409&pages=860-921&publication_year=2001&author=Lander,ES Google Scholar] #<br/> Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007). #*[https://doi.org/10.1371/journal.pbio.0050254 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20diploid%20genome%20sequence%20of%20an%20individual%20human&journal=PLoS%20Biol.&volume=5&publication_year=2007&author=Levy,S Google Scholar] #<br/> Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXhs1Ghtbs%3D CAS] #*[https://doi.org/10.1101/gr.097261.109 Article] #*[http://scholar.google.com/scholar_lookup?&title=De%20novo%20assembly%20of%20human%20genomes%20with%20massively%20parallel%20short%20read%20sequencing&journal=Genome%20Res.&volume=20&pages=265-272&publication_year=2010&author=Li,R Google Scholar] #<br/> Bai, H. et al. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations. Genome Biol. Evol. 6, 3122–3136 (2014). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsFeht7c%3D CAS] #*[https://doi.org/10.1093/gbe/evu242 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20genome%20of%20a%20Mongolian%20individual%20reveals%20the%20genetic%20imprints%20of%20Mongolians%20on%20modern%20human%20populations&journal=Genome%20Biol.%20Evol.&volume=6&pages=3122-3136&publication_year=2014&author=Bai,H Google Scholar] #<br/> Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhs1Smt7c%3D CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2011PNAS..108.1513G ADS] #*[https://doi.org/10.1073/pnas.1017351108 Article] #*[http://scholar.google.com/scholar_lookup?&title=High-quality%20draft%20assemblies%20of%20mammalian%20genomes%20from%20massively%20parallel%20sequence%20data&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&volume=108&pages=1513-1518&publication_year=2011&author=Gnerre,S Google Scholar] #<br/> Steinberg, K. M. et al. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitVOls7zK CAS] #*[https://doi.org/10.1101/gr.180893.114 Article] #*[http://scholar.google.com/scholar_lookup?&title=Single%20haplotype%20assembly%20of%20the%20human%20genome%20from%20a%20hydatidiform%20mole&journal=Genome%20Res.&volume=24&pages=2066-2076&publication_year=2014&author=Steinberg,KM Google Scholar] #<br/> Cao, H. et al. De novo assembly of a haplotype-resolved human genome. Nat. Biotechnol. 33, 617–622 (2015). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFemtr%2FF CAS] #*[https://doi.org/10.1038/nbt.3200 Article] #*[http://scholar.google.com/scholar_lookup?&title=De%20novo%20assembly%20of%20a%20haplotype-resolved%20human%20genome&journal=Nat.%20Biotechnol.&volume=33&pages=617-622&publication_year=2015&author=Cao,H Google Scholar] #<br/> Alkan, C., Sajjadian, S. & Eichler, E. E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61–65 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXhsVGhsr%2FM CAS] #*[https://doi.org/10.1038/nmeth.1527 Article] #*[http://scholar.google.com/scholar_lookup?&title=Limitations%20of%20next-generation%20genome%20sequence%20assembly&journal=Nat.%20Methods&volume=8&pages=61-65&publication_year=2011&author=Alkan,C&author=Sajjadian,S&author=Eichler,EE Google Scholar] #<br/> Chaisson, M. J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvFGlt7bJ CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2015Natur.517..608C ADS] #*[https://doi.org/10.1038/nature13907 Article] #*[http://scholar.google.com/scholar_lookup?&title=Resolving%20the%20complexity%20of%20the%20human%20genome%20using%20single-molecule%20sequencing&journal=Nature&volume=517&pages=608-611&publication_year=2015&author=Chaisson,MJ Google Scholar] #<br/> Huddleston, J. et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24, 688–696 (2014). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXmt1CrsLo%3D CAS] #*[https://doi.org/10.1101/gr.168450.113 Article] #*[http://scholar.google.com/scholar_lookup?&title=Reconstructing%20complex%20regions%20of%20genomes%20using%20long-read%20sequencing%20technology&journal=Genome%20Res.&volume=24&pages=688-696&publication_year=2014&author=Huddleston,J Google Scholar] #<br/> McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014). #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014PLoSO...9j6689M ADS] #*[https://doi.org/10.1371/journal.pone.0106689 Article] #*[http://scholar.google.com/scholar_lookup?&title=Illumina%20TruSeq%20synthetic%20long-reads%20empower%20de%20novo%20assembly%20and%20resolve%20complex,%20highly-repetitive%20transposable%20elements&journal=PLoS%20ONE&volume=9&publication_year=2014&author=McCoy,RC Google Scholar] #<br/> Dong, Y. et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135–141 (2013). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhvVOqs73F CAS] #*[https://doi.org/10.1038/nbt.2478 Article] #*[http://scholar.google.com/scholar_lookup?&title=Sequencing%20and%20automated%20whole-genome%20optical%20mapping%20of%20the%20genome%20of%20a%20domestic%20goat%20(Capra%20hircus)&journal=Nat.%20Biotechnol.&volume=31&pages=135-141&publication_year=2013&author=Dong,Y Google Scholar] #<br/> Cao, H. et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience 3, 34 (2014). #*[https://doi.org/10.1186/2047-217X-3-34 Article] #*[http://scholar.google.com/scholar_lookup?&title=Rapid%20detection%20of%20structural%20variation%20in%20a%20human%20genome%20using%20nanochannel-based%20genome%20mapping%20technology&journal=Gigascience&volume=3&publication_year=2014&author=Cao,H Google Scholar] #<br/> Howe, K. & Wood, J. M. Using optical mapping data for the improvement of vertebrate genome assemblies. Gigascience 4, 10 (2015). #*[https://doi.org/10.1186/s13742-015-0052-y Article] #*[http://scholar.google.com/scholar_lookup?&title=Using%20optical%20mapping%20data%20for%20the%20improvement%20of%20vertebrate%20genome%20assemblies&journal=Gigascience&volume=4&publication_year=2015&author=Howe,K&author=Wood,JM Google Scholar] #<br/> Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFWqurzM CAS] #*[https://doi.org/10.1038/nmeth.3454 Article] #*[http://scholar.google.com/scholar_lookup?&title=Assembly%20and%20diploid%20architecture%20of%20an%20individual%20human%20genome%20via%20single-molecule%20technologies&journal=Nat.%20Methods&volume=12&pages=780-786&publication_year=2015&author=Pendleton,M Google Scholar] #<br/> Shi, L. et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun. 7, 12065 (2016). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtFSqtLbJ CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2016NatCo...712065S ADS] #*[https://doi.org/10.1038/ncomms12065 Article] #*[http://scholar.google.com/scholar_lookup?&title=Long-read%20sequencing%20and%20de%20novo%20assembly%20of%20a%20Chinese%20genome&journal=Nat.%20Commun.&volume=7&publication_year=2016&author=Shi,L Google Scholar] #<br/> Church, G. M. The personal genome project. Mol. Syst. Biol. 1, 2005.0030 (2005). #*[https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD283psl2nuw%3D%3D CAS] #*[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16729065 PubMed] #*[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681452 PubMed Central] #*[http://scholar.google.com/scholar_lookup?&title=The%20personal%20genome%20project&journal=Mol.%20Syst.%20Biol.&volume=1&publication_year=2005&author=Church,GM Google Scholar] #<br/> The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010). #<br/> The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012). #<br/> Muddyman, D., Smee, C., Griffin, H. & Kaye, J. Implementing a successful data-management framework: the UK10K managed access model. Genome Med. 5, 100 (2013). #*[https://doi.org/10.1186/gm504 Article] #*[http://scholar.google.com/scholar_lookup?&title=Implementing%20a%20successful%20data-management%20framework:%20the%20UK10K%20managed%20access%20model&journal=Genome%20Med.&volume=5&publication_year=2013&author=Muddyman,D&author=Smee,C&author=Griffin,H&author=Kaye,J Google Scholar] #<br/> Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014). #<br/> Zhang, W. et al. Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population. BMC Bioinformatics 15, S6 (2014). #*[https://doi.org/10.1186/1471-2105-15-S11-S6 Article] #*[http://scholar.google.com/scholar_lookup?&title=Whole%20genome%20sequencing%20of%2035%20individuals%20provides%20insights%20into%20the%20genetic%20architecture%20of%20Korean%20population&journal=BMC%20Bioinformatics&volume=15&publication_year=2014&author=Zhang,W Google Scholar] #<br/> The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010). #<br/> Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012). #*[https://doi.org/10.1186/2047-217X-1-18 Article] #*[http://scholar.google.com/scholar_lookup?&title=SOAPdenovo2:%20an%20empirically%20improved%20memory-efficient%20short-read%20de%20novo%20assembler&journal=Gigascience&volume=1&publication_year=2012&author=Luo,R Google Scholar] #<br/> Church, D. M. et al. Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXpsVamtr4%3D CAS] #*[https://doi.org/10.1371/journal.pbio.1001091 Article] #*[http://scholar.google.com/scholar_lookup?&title=Modernizing%20reference%20genome%20assemblies&journal=PLoS%20Biol.&volume=9&publication_year=2011&author=Church,DM Google Scholar] #<br/> Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D759–D763 (2014). #*[https://doi.org/10.1093/nar/gkt1114 Article] #*[http://scholar.google.com/scholar_lookup?&title=RefSeq:%20an%20update%20on%20mammalian%20reference%20sequences&journal=Nucleic%20Acids%20Res.&volume=42&pages=D759-D763&publication_year=2014&author=Pruitt,KD Google Scholar] #<br/> Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XpsVWjsL4%3D CAS] #*[https://doi.org/10.1038/nbt.2280 Article] #*[http://scholar.google.com/scholar_lookup?&title=Hybrid%20error%20correction%20and%20de%20novo%20assembly%20of%20single-molecule%20sequencing%20reads&journal=Nat.%20Biotechnol.&volume=30&pages=693-700&publication_year=2012&author=Koren,S Google Scholar] #<br/> Kersbergen, P. et al. Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genet. 10, 69 (2009). #*[https://doi.org/10.1186/1471-2156-10-69 Article] #*[http://scholar.google.com/scholar_lookup?&title=Developing%20a%20set%20of%20ancestry-sensitive%20DNA%20markers%20reflecting%20continental%20origins%20of%20humans&journal=BMC%20Genet.&volume=10&publication_year=2009&author=Kersbergen,P Google Scholar] #<br/> Li, Y. et al. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat. Biotechnol. 29, 723–730 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXptlaltrY%3D CAS] #*[https://doi.org/10.1038/nbt.1904 Article] #*[http://scholar.google.com/scholar_lookup?&title=Structural%20variation%20in%20two%20human%20genomes%20mapped%20at%20single-nucleotide%20resolution%20by%20whole%20genome%20de%20novo%20assembly&journal=Nat.%20Biotechnol.&volume=29&pages=723-730&publication_year=2011&author=Li,Y Google Scholar] #<br/> Li, R. et al. Building the sequence map of the human pan-genome. Nat. Biotechnol. 28, 57–63 (2010). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsFaqtLrL CAS] #*[https://doi.org/10.1038/nbt.1596 Article] #*[http://scholar.google.com/scholar_lookup?&title=Building%20the%20sequence%20map%20of%20the%20human%20pan-genome&journal=Nat.%20Biotechnol.&volume=28&pages=57-63&publication_year=2010&author=Li,R Google Scholar] #<br/> Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014). #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014Natur.505...43P ADS] #*[https://doi.org/10.1038/nature12886 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20complete%20genome%20sequence%20of%20a%20Neanderthal%20from%20the%20Altai%20Mountains&journal=Nature&volume=505&pages=43-49&publication_year=2014&author=Prüfer,K Google Scholar] #<br/> Chen, R. & Butte, A. J. The reference human genome demonstrates high risk of type 1 diabetes and other disorders. Pac. Symp. Biocomput. 231–242 (2011). #<br/> Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXjtlWmtb0%3D CAS] #*[https://doi.org/10.1093/nar/29.1.308 Article] #*[http://scholar.google.com/scholar_lookup?&title=dbSNP:%20the%20NCBI%20database%20of%20genetic%20variation&journal=Nucleic%20Acids%20Res.&volume=29&pages=308-311&publication_year=2001&author=Sherry,ST Google Scholar] #<br/> Rosenfeld, J. A., Mason, C. E. & Smith, T. M. Limitations of the human reference genome for personalized genomics. PLoS ONE 7, e40294 (2012). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtVKrsr3J CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PLoSO...740294R ADS] #*[https://doi.org/10.1371/journal.pone.0040294 Article] #*[http://scholar.google.com/scholar_lookup?&title=Limitations%20of%20the%20human%20reference%20genome%20for%20personalized%20genomics&journal=PLoS%20ONE&volume=7&publication_year=2012&author=Rosenfeld,JA&author=Mason,CE&author=Smith,TM Google Scholar] #<br/> Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XnsVCgsrg%3D CAS] #*[https://doi.org/10.1038/ng1847 Article] #*[http://scholar.google.com/scholar_lookup?&title=Principal%20components%20analysis%20corrects%20for%20stratification%20in%20genome-wide%20association%20studies&journal=Nat.%20Genet.&volume=38&pages=904-909&publication_year=2006&author=Price,AL Google Scholar] #<br/> Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtVSqurrL CAS] #*[https://doi.org/10.1086/519795 Article] #*[http://scholar.google.com/scholar_lookup?&title=PLINK:%20a%20tool%20set%20for%20whole-genome%20association%20and%20population-based%20linkage%20analyses&journal=Am.%20J.%20Hum.%20Genet.&volume=81&pages=559-575&publication_year=2007&author=Purcell,S Google Scholar] #<br/> Tosato, G. & Cohen, J. I. Generation of Epstein-Barr Virus (EBV)-immortalized B cell lines. Curr. Protoc. Immunol. Chapter 7, Unit 7.22 (2007). #*[http://scholar.google.com/scholar_lookup?&title=Generation%20of%20Epstein-Barr%20Virus%20(EBV)-immortalized%20B%20cell%20lines&journal=Curr.%20Protoc.%20Immunol.&volume=Chapter%207&publication_year=2007&author=Tosato,G&author=Cohen,JI Google Scholar] #<br/> English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhvVagsr3E CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PLoSO...747768E ADS] #*[https://doi.org/10.1371/journal.pone.0047768 Article] #*[http://scholar.google.com/scholar_lookup?&title=Mind%20the%20gap:%20upgrading%20genomes%20with%20Pacific%20Biosciences%20RS%20long-read%20sequencing%20technology&journal=PLoS%20ONE&volume=7&publication_year=2012&author=English,AC Google Scholar] #<br/> Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at&nbsp;[http://arxiv.org/pdf/1303.3997v2.pdf http://arxiv.org/pdf/1303.3997v2.pdf]&nbsp;(2013). #<br/> Soderlund, C., Bomhoff, M. & Nelson, W. M. SyMAP v3.4: a turnkey synteny system with application to plant genome. Nucleic Acids Res. 39, e68 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXmvVamurY%3D CAS] #*[https://doi.org/10.1093/nar/gkr123 Article] #*[http://scholar.google.com/scholar_lookup?&title=SyMAP%20v3.4:%20a%20turnkey%20synteny%20system%20with%20application%20to%20plant%20genome&journal=Nucleic%20Acids%20Res.&volume=39&publication_year=2011&author=Soderlund,C&author=Bomhoff,M&author=Nelson,WM Google Scholar] #<br/> Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXjslyqt7s%3D CAS] #*[https://doi.org/10.1186/1471-2105-13-238 Article] #*[http://scholar.google.com/scholar_lookup?&title=Mapping%20single%20molecule%20sequencing%20reads%20using%20basic%20local%20alignment%20with%20successive%20refinement%20(BLASR):%20application%20and%20theory&journal=BMC%20Bioinformatics&volume=13&publication_year=2012&author=Chaisson,MJ&author=Tesler,G Google Scholar] #<br/> Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXntFGrsbo%3D CAS] #*[https://doi.org/10.1101/gr.089532.108 Article] #*[http://scholar.google.com/scholar_lookup?&title=ABySS:%20a%20parallel%20assembler%20for%20short%20read%20sequence%20data&journal=Genome%20Res.&volume=19&pages=1117-1123&publication_year=2009&author=Simpson,JT Google Scholar] #<br/> Fan, L. & Yao, Y. G. MitoTool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations. Mitochondrion 11, 351–356 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlGlu70%3D CAS] #*[https://doi.org/10.1016/j.mito.2010.09.013 Article] #*[http://scholar.google.com/scholar_lookup?&title=MitoTool:%20a%20web%20server%20for%20the%20analysis%20and%20retrieval%20of%20human%20mitochondrial%20DNA%20sequence%20variations&journal=Mitochondrion&volume=11&pages=351-356&publication_year=2011&author=Fan,L&author=Yao,YG Google Scholar] #<br/> McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXhtFeru7jM CAS] #*[https://doi.org/10.1101/gr.107524.110 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20Genome%20Analysis%20Toolkit:%20a%20MapReduce%20framework%20for%20analyzing%20next-generation%20DNA%20sequencing%20data&journal=Genome%20Res.&volume=20&pages=1297-1303&publication_year=2010&author=McKenna,A Google Scholar] #<br/> Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1MXhtVKmtrg%3D CAS] #*[https://doi.org/10.1093/nar/27.2.573 Article] #*[http://scholar.google.com/scholar_lookup?&title=Tandem%20repeats%20finder:%20a%20program%20to%20analyze%20DNA%20sequences&journal=Nucleic%20Acids%20Res.&volume=27&pages=573-580&publication_year=1999&author=Benson,G Google Scholar] #<br/> Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005). #*[https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD2Mvislertw%3D%3D CAS] #*[https://doi.org/10.1159/000084979 Article] #*[http://scholar.google.com/scholar_lookup?&title=Repbase%20Update,%20a%20database%20of%20eukaryotic%20repetitive%20elements&journal=Cytogenet.%20Genome%20Res.&volume=110&pages=462-467&publication_year=2005&author=Jurka,J Google Scholar] #<br/> Bedell, J. A., Korf, I. & Gish, W. MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics 16, 1040–1041 (2000). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXptlOlsA%3D%3D CAS] #*[https://doi.org/10.1093/bioinformatics/16.11.1040 Article] #*[http://scholar.google.com/scholar_lookup?&title=MaskerAid:%20a%20performance%20enhancement%20to%20RepeatMasker&journal=Bioinformatics&volume=16&pages=1040-1041&publication_year=2000&author=Bedell,JA&author=Korf,I&author=Gish,W Google Scholar] #<br/> Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass--a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009). #*[https://doi.org/10.1093/bioinformatics/btp084 Article] #*[http://scholar.google.com/scholar_lookup?&title=TEclass--a%20tool%20for%20automated%20classification%20of%20unknown%20eukaryotic%20transposable%20elements&journal=Bioinformatics&volume=25&pages=1329-1330&publication_year=2009&author=Abrusán,G&author=Grundmann,N&author=DeMester,L&author=Makalowski,W Google Scholar] #<br/> Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). #*[https://doi.org/10.1186/1471-2105-10-421 Article] #*[http://scholar.google.com/scholar_lookup?&title=BLAST+:%20architecture%20and%20applications&journal=BMC%20Bioinformatics&volume=10&publication_year=2009&author=Camacho,C Google Scholar] #<br/> Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005). #*[https://doi.org/10.1186/1471-2105-6-31 Article] #*[http://scholar.google.com/scholar_lookup?&title=Automated%20generation%20of%20heuristics%20for%20biological%20sequence%20comparison&journal=BMC%20Bioinformatics&volume=6&publication_year=2005&author=Slater,GS&author=Birney,E Google Scholar] #<br/> Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xps1yiu78%3D CAS] #*[https://doi.org/10.1093/nar/gkl200 Article] #*[http://scholar.google.com/scholar_lookup?&title=AUGUSTUS:%20ab%20initio%20prediction%20of%20alternative%20transcripts&journal=Nucleic%20Acids%20Res.&volume=34&pages=W435-W439&publication_year=2006&author=Stanke,M Google Scholar] #<br/> Jiang, Z., Hubley, R., Smit, A. & Eichler, E. E. DupMasker: a tool for annotating primate segmental duplications. Genome Res. 18, 1362–1368 (2008). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXpsFOmsbg%3D CAS] #*[https://doi.org/10.1101/gr.078477.108 Article] #*[http://scholar.google.com/scholar_lookup?&title=DupMasker:%20a%20tool%20for%20annotating%20primate%20segmental%20duplications&journal=Genome%20Res.&volume=18&pages=1362-1368&publication_year=2008&author=Jiang,Z&author=Hubley,R&author=Smit,A&author=Eichler,EE Google Scholar] #<br/> Harris, R. S. Improved Pairwise Alignment of Genomic DNA (PhD thesis, Pennsylvania State Univ (2007). #<br/> Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38Xks12hs7s%3D CAS] #*[https://doi.org/10.1101/gr.229102 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20human%20genome%20browser%20at%20UCSC&journal=Genome%20Res.&volume=12&pages=996-1006&publication_year=2002&author=Kent,WJ Google Scholar] #<br/> Earl, D. et al. Alignathon: a competitive assessment of whole-genome alignment methods. Genome Res. 24, 2077–2089 (2014). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitVOls7zF CAS] #*[http://www.ams.org/mathscinet-getitem?mr=3208352 MathSciNet] #*[https://doi.org/10.1101/gr.174920.114 Article] #*[http://scholar.google.com/scholar_lookup?&title=Alignathon:%20a%20competitive%20assessment%20of%20whole-genome%20alignment%20methods&journal=Genome%20Res.&volume=24&pages=2077-2089&publication_year=2014&author=Earl,D Google Scholar] #<br/> Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). #*[https://doi.org/10.1093/bioinformatics/btp352 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20Sequence%20Alignment/Map%20format%20and%20SAMtools&journal=Bioinformatics&volume=25&pages=2078-2079&publication_year=2009&author=Li,H Google Scholar] #<br/> Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1GmtL3E CAS] #*[https://doi.org/10.4161/fly.19695 Article] #*[http://scholar.google.com/scholar_lookup?&title=A%20program%20for%20annotating%20and%20predicting%20the%20effects%20of%20single%20nucleotide%20polymorphisms,%20SnpEff:%20SNPs%20in%20the%20genome%20of%20Drosophila%20melanogaster%20strain%20w1118;%20iso-2;%20iso-3&journal=Fly%20(Austin)&volume=6&pages=80-92&publication_year=2012&author=Cingolani,P Google Scholar] #<br/> Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhsFCitr%2FO CAS] #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2012PLoSO...746688C ADS] #*[https://doi.org/10.1371/journal.pone.0046688 Article] #*[http://scholar.google.com/scholar_lookup?&title=Predicting%20the%20functional%20effect%20of%20amino%20acid%20substitutions%20and%20indels&journal=PLoS%20ONE&volume=7&publication_year=2012&author=Choi,Y&author=Sims,GE&author=Murphy,S&author=Miller,JR&author=Chan,AP Google Scholar] #<br/> Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXlslyqtLY%3D CAS] #*[https://doi.org/10.1093/nar/gki475 Article] #*[http://scholar.google.com/scholar_lookup?&title=WebGestalt:%20an%20integrated%20system%20for%20exploring%20gene%20sets%20in%20various%20biological%20contexts&journal=Nucleic%20Acids%20Res.&volume=33&pages=W741-W748&publication_year=2005&author=Zhang,B&author=Kirov,S&author=Snoddy,J Google Scholar] #<br/> Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXoslGh CAS] #*[https://doi.org/10.1093/nar/gkt1113 Article] #*[http://scholar.google.com/scholar_lookup?&title=ClinVar:%20public%20archive%20of%20relationships%20among%20sequence%20variation%20and%20human%20phenotype&journal=Nucleic%20Acids%20Res.&volume=42&pages=D980-D985&publication_year=2014&author=Landrum,MJ Google Scholar] #<br/> MacDonald, J. R., Ziman, R., Yuen, R. K. C., Feuk, L. & Scherer, S. W. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXos12n CAS] #*[https://doi.org/10.1093/nar/gkt958 Article] #*[http://scholar.google.com/scholar_lookup?&title=The%20Database%20of%20Genomic%20Variants:%20a%20curated%20collection%20of%20structural%20variation%20in%20the%20human%20genome&journal=Nucleic%20Acids%20Res.&volume=42&pages=D986-D992&publication_year=2014&author=MacDonald,JR&author=Ziman,R&author=Yuen,RKC&author=Feuk,L&author=Scherer,SW Google Scholar] #<br/> Wang, J. et al. dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum. Mutat. 27, 323–329 (2006). #*[http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006nn1..book.....W ADS] #*[https://doi.org/10.1002/humu.20307 Article] #*[http://scholar.google.com/scholar_lookup?&title=dbRIP:%20a%20highly%20integrated%20database%20of%20retrotransposon%20insertion%20polymorphisms%20in%20humans&journal=Hum.%20Mutat.&volume=27&pages=323-329&publication_year=2006&author=Wang,J Google Scholar] #<br/> Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011). #*[https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsVymsr4%3D CAS] #*[https://doinlm.nih.orggov/10.103827882922/nature09708 Article#*[http://scholar.google.com/scholar_lookup?&title=Mapping%20copy%20number%20variation%20by%20population-scale%20genome%20sequencing&journal=Nature&volume=470&pages=59-65&publication_year=2011&author=Mills,RE Google Scholar] )
</div>
&nbsp;
395
edits

Navigation menu