Open main menu

kogic.kr β

Changes

Genomics

5,920 bytes removed, 12:16, 4 August 2013
no edit summary
<p><strongfont size="3">Genomics</strong> is the study of an organism's entire <a titlefont size="Genome" href="http://en.wikipedia.org/wiki/Genome5">genomeWhat is genomics?</afont>. In contrast, <br /><br />Genomics</strong> is the investigation [[omics]] study of single genes[[gene]]s of individual organisms, their functions and roles&nbsp;populations, something very common in today's medical and biological research, and a primary focus of species. <a title="Molecular biology" href="http:br /></en.wikipedia.orgfont></wiki/Molecular_biologyp><p><font size="3">molecular biology</It is also a>paradigm of performing biological science that deviates from&nbsp;investigating single genes, does not fall into the definition of genomics, unless the aim of this genetic, pathwaytheir functions, and functional information analysis is to elucidate its effect on, place in, and response to the entire genome's networksroles.<br /></font></p><table summaryp><font size="Contents3" class="toc" id="toc"> >The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts. <tbody/font> <tr/p> <tdp><br /font size="3"> Genomics inevitably employs high performance computing and bioinformatics technologies.</tdfont> </trp> </tbodyp></tablespan class="mw-headline"><script typefont size="text/javascript4">&nbsp; </font></span><![CDATA[ if (window.showTocToggle) { var tocShowText /p><div v:shape= "show_x0000_s1026"; var tocHideText ><span style= "hideFONT-SIZE: 32pt"; showTocToggle(); } //]]></script><p><a idfont color="History_of_the_field#339966" namesize="History_of_the_field5">&quot;[[Genome sequencing is not Genomics]]&quot;</font></aspan></div><p>&nbsp;</p><h2p><strong><span class="editsection"mw-headline"></span><span classfont size="mw-headline4">History of the field</font></span></h2strong></p><p>Genomics can be said to have appeared in the <a titlefont size="1980s3" href="http://en.wikipedia.org/wiki/1980s">1980s</>Genomics was practically founded by Fred Sanger group in 1970s when they developed&nbsp;a>, gene sequencing technique and took off in completed the <a title="1990s" href="http://enfirst genomes; namely bacteriophage &Phi;-X174; (5,368 bp),&nbsp;the human mitochondrial genome, and lamda virus.wikipedia.org</wiki/1990s"font>1990s</ap> with the initiation of <a title="Genome projects" href="http://en.wikipedia.org/wiki/Genome_projects"p>genome projects</a> for several <a titlefont size="Biological species3" href="http://en.wikipedia.org/wiki/Biological_species">biological species</a>. A major branch >In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of genomics is still concerned with <a titlethe University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.<sup id="Sequencing_ref-0" hrefclass="http://en.wikipedia.org/wiki/Sequencingreference">sequencing[1]</asup> the genomes of various organismsIn 1976, but the knowledge of full genomes has created team determined the possibility for the field complete nucleotide-sequence of <a titlebacteriophage MS2-RNA.<sup id="Functional genomics_ref-1" hrefclass="http://en.wikipedia.org/wiki/Functional_genomicsreference">functional genomics[2]</asup>, mainly concerned with patterns of The first DNA-based genome to be sequenced in its entirety was that of bacteriophage &Phi;-X174; (5,368 bp), sequenced by Frederick Sanger in 1977<a titlesup id="Gene expression_ref-2" hrefclass="http://en.wikipedia.org/wiki/Gene_expressionreference">gene expression[3]</asup> during various conditions. The most important tools here are first free-living organism to be sequenced was that of <a title="Microarray" href="http://en.wikipedia.org/wiki/Microarray"em>microarraysHaemophilus influenzae</aem> (1.8 Mb) in 1995, and <since then genomes are being sequenced at a title="Bioinformatics" href="http://enrapid pace.wikipediaA rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.org/wiki</Bioinformatics"font>bioinformatics</ap><p>. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called <a titlefont size="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics3">proteomics</a>.As of September 2007, the complete sequence was known of about 1879 viruses </p><p>In <a titlesup id="1972_ref-3" hrefclass="http://en.wikipedia.org/wiki/1972reference">1972[4]</asup>, 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. <a titlesup id="Walter Fiers_ref-4" hrefclass="http://en.wikipedia.org/wiki/Walter_Fiersreference">Walter Fiers[5]</asup> and his team at the Laboratory of Molecular Biology Most of the <a title="University of Ghent" href="http:bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <em>Haemophilus influenzae<//enem>.wikipedia.org/wiki/University_of_Ghent"Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (<em>University of GhentSaccharomyces cerevisiae</aem>) has long been an important model organism for the eukaryotic cell, while the fruit fly <em> (Drosophila melanogaster</em> has been a title="Ghent" href="http://envery important tool (notably in early pre-molecular genetics).wikipedia.org/wiki/Ghent"The worm <em>GhentCaenorhabditis elegans</aem>, is an often used simple model for multicellular organisms. The zebrafish <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium"em>BelgiumBrachydanio rerio</aem>) were is used for many developmental studies on the first to determine molecular level and the sequence of flower <em>Arabidopsis thaliana</em> is a gene: the gene model organism for <a title="Bacteriophage MS2" href="http://enflowering plants.wikipedia.org/wiki/Bacteriophage_MS2"The Japanese pufferfish (<em>Bacteriophage MS2Takifugu rubripes</aem> coat protein.) and the spotted green pufferfish (<sup class="reference" id="_ref-0"em>Tetraodon nigroviridis<a title="" href="http://en.wikipedia.org/wiki/Genomics#_noteem>) are interesting because of their small and compact genomes, containing very little non-0coding DNA compared to most species. <sup id="_ref-5" class="reference">[1]</a>[6]</sup> In <a titlesup id="1976_ref-6" hrefclass="http://en.wikipedia.org/wiki/1976reference">1976[7]</asup> The mammals dog (<em>Canis familiaris</em>), the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup class="reference" idid="_ref-17"><a titleclass="" href="http://en.wikipedia.org/wiki/Genomics#_note-1reference">[28]</a></sup> The first DNA-based genome to be sequenced in its entirety was that of brown rat (<em>Rattus norvegicus<a title="Bacteriophage" href="http:/em>), mouse (<em>Mus musculus</en.wikipedia.org/wiki/Bacteriophage"em>), and chimpanzee (<em>bacteriophagePan troglodytes</aem> <a title="Phi-X174 phage" href="http://en) are all important model animals in medical research.wikipedia.org</wikifont></Phi-X174_phagep><p><font size="3">&Phi;-X174nbsp;</afont></p><p><strong> (5,368 <a titlespan class="Base pairmw-headline" href><font size="http://en.wikipedia.org/wiki/Base_pair4">bpBacteriophage Genomics</afont>), sequenced by <a title="Frederick Sanger" href="http:/span></en.wikipedia.org/wiki/Frederick_Sanger"strong>Frederick Sanger</ap> in <a title="1977" href="http://en.wikipedia.org/wiki/1977">1977</ap><sup classfont size="reference" id="_ref-23"><Bacteriophages have played and continue to play a title="" href="http://enkey role in bacterial genetics and molecular biology.wikipediaHistorically, they were used to define gene structure and gene regulation.org/wiki/Genomics#_note-2">[3]</a></sup>. The Also the first free-living organism genome to be sequenced was that of <em><a title="Haemophilus influenzae" href="http://enbacteriophage.wikipediaHowever, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em> (1Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution.8 <Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a title="Base pair" href="http://ensubstantial amount of microbial DNA consists of prophage sequences and prophage-like elements.wikipedia.org/wiki/Base_pair">Mb</a>) A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<a titlesup id="1995_ref-McGrath_0" hrefclass="http://en.wikipedia.org/wiki/1995reference">1995[9]</sup></afont>, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"p><p>Human Genome Project&nbsp;</ap> in early <a title="2001p><strong><span class=" hrefmw-headline"><font size="http:4">Cyanobacteria Genomics</font></en.wikipedia.org/wiki/2001"span>2001</astrong>, creating much fanfare.</p><p>As of September 2007, the complete sequence was known of about 1879 <a titlefont size="Virus" href="http://en.wikipedia.org/wiki/Virus3">viruses</aAt present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <em> Prochlorococcus<sup class="reference" id="_ref-3"/em><em>Synechococcus<a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-3"em>[4]strains, </aem>Trichodesmium erythraeum</supem>, 577 IMS101 and <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria"em>bacterialCrocosphaera watsonii</aem> species [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and roughly 23 <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <em>eukaryoteProchlorococcus</aem> organisms, of which about half are and marine <em>Synechococcus<a title="Fungi" href="http://en.wikipedia.org/wiki/Fungi"em> isolates, <em>fungiAcaryochloris</aem>. and <sup class="reference" id="_ref-4"em>Prochloron<a title="" href="http:/em>, the N<sub>2</en.wikipedia.org/wiki/Genomics#_notesub>-4"fixing filamentous cyanobacteria <em>[5]Nodularia spumigena</aem>, <em>Lyngbya aestuarii</supem> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as and <em>Lyngbya majuscula</em><a title="Haemophilus influenzae" href="http://en, as well as bacteriophages infecting marine cyanobaceria.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em>. Of Thus, the other sequenced species, most were chosen because they were well-studied model organisms or promised growing body of genome information can also be tapped in a more general way to become good modelsaddress global problems by applying a comparative approach. Yeast (<em><a title="Saccharomyces cerevisiae" href="http://enSome new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.wikipedia.org/wiki/Saccharomyces_cerevisiae<sup id=">Saccharomyces cerevisiae_ref-Herrero_0" class="reference">[10]</sup></afont></emp><p>) has long been an important <a titlefont size="Model organism4" href="http://en.wikipedia.org/wiki>[[Genome sequencing and genomics]]</Model_organism"font>model organism</ap> for the <a title="Eukaryotic cell" href="http://en.wikipedia.org/wiki/Eukaryotic_cell">eukaryotic cellp></astrong>, while the fruit fly <emspan class="mw-headline"><a titlefont size="Drosophila melanogaster" href="http://en.wikipedia.org/wiki/Drosophila_melanogaster">Drosophila melanogaster</a></em> has been a very important tool (notably in early pre-molecular <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a>). The worm <em><a title="Caenorhabditis elegans" href="http://en.wikipedia.org/wiki/Caenorhabditis_elegans">Caenorhabditis elegans</a></em> is an often used simple model for <a title="Multicellular organism" href="http://en.wikipedia.org/wiki/Multicellular_organism">multicellular organisms</a>. The zebrafish <em><a title="Brachydanio rerio" href="http://en.wikipedia.org/wiki/Brachydanio_rerio">Brachydanio rerio</a></em> is used for many developmental studies on the molecular level and the flower <em><a title="Arabidopsis thaliana" href="http://en.wikipedia.org/wiki/Arabidopsis_thaliana">Arabidopsis thaliana</a></em> is a model organism for flowering plants. The <a title="Japanese pufferfish" class="new" href="http://en.wikipedia.org/w/index.php?title=Japanese_pufferfish&amp;action=edit">Japanese pufferfish</a> (<em><a title="Takifugu rubripes" href="http://en.wikipedia.org/wiki/Takifugu_rubripes">Takifugu rubripes</a></em>) and the <a title="Spotted green pufferfish" class="new" href="http://en.wikipedia.org/w/index.php?title=Spotted_green_pufferfish&amp;action=edit">spotted green pufferfish</a> (<em><a title="Tetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Tetraodon_nigroviridis">Tetraodon nigroviridis</a></em>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-5">[6]</a></sup> <sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-6">[7]</a></sup> The mammals dog (<em><a title="Canis familiaris" href="http://en.wikipedia.org/wiki/Canis_familiaris">Canis familiaris</a></em>), <sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-7">[8]</a></sup> brown rat (<em><a title="Rattus norvegicus" href="http://en.wikipedia.org/wiki/Rattus_norvegicus">Rattus norvegicus</a></em>), mouse (<em><a title="Mus musculus" href="http://en.wikipedia.org/wiki/Mus_musculus">Mus musculus</a></em>), and chimpanzee (<em><a title="Pan troglodytes" href="http://en.wikipedia.org/wiki/Pan_troglodytes">Pan troglodytes</a></em>) are all important model animals in medical research.</p><p><a id="Bacteriophage_Genomics" name="Bacteriophage_Genomics"></a></p><h2><span class="editsection"></span><span class="mw-headline">Bacteriophage Genomics</span></h2><p><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophages</a> have played and continue to play a key role in bacterial <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. Historically, they were used to define <a title="Gene" href="http://en.wikipedia.org/wiki/Gene">gene</a> structure and gene regulation. Also the first <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> to be sequenced was a <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a>. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying <a title="Phage" href="http://en.wikipedia.org/wiki/Phage">phage</a> evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of <a title="Prophage" href="http://en.wikipedia.org/wiki/Prophage">prophage</a> sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<sup class="reference" id="_ref-McGrath_0"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-McGrath">[9]</a></sup></p><p><a id="Cyanobacteria_Genomics" name="Cyanobacteria_Genomics"></a></p><h2><span class="editsection"></span><span class="mw-headline">Cyanobacteria Genomics</span></h2><p>At present there are 24 <a title="Cyanobacteria" href="http://en.wikipedia.org/wiki/Cyanobacteria">cyanobacteria</a> for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <em><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></em> strains, seven marine <em><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></em> strains, <em><a title="Trichodesmium erythraeum" class="new" href="http://en.wikipedia.org/w/index.php?title=Trichodesmium_erythraeum&amp;action=edit">Trichodesmium erythraeum</a></em> IMS101 and <em><a title="Crocosphaera watsonii" class="new" href="http://en.wikipedia.org/w/index.php?title=Crocosphaera_watsonii&amp;action=edit">Crocosphaera watsonii</a></em> [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <em><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></em> and marine <em><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></em> isolates, <em><a title="Acaryochloris" class="new" href="http://en.wikipedia.org/w/index.php?title=Acaryochloris&amp;action=edit">Acaryochloris</a></em> and <em><a title="Prochloron" class="new" href="http://en.wikipedia.org/w/index.php?title=Prochloron&amp;action=edit">Prochloron</a></em>, the N<sub>2</sub>-fixing filamentous cyanobacteria <em><a title="Nodularia spumigena" class="new" href="http://en.wikipedia.org/w/index.php?title=Nodularia_spumigena&amp;action=edit">Nodularia spumigena</a></em>, <em><a title="Lyngbya aestuarii" class="new" href="http://en.wikipedia.org/w/index.php?title=Lyngbya_aestuarii&amp;action=edit">Lyngbya aestuarii</a></em> and <em><a title="Lyngbya majuscula" href="http://en.wikipedia.org/wiki/Lyngbya_majuscula">Lyngbya majuscula</a></em>, as well as <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophages</a> infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis">photosynthesis</a>, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup class="reference" id="_ref-Herrero_0"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-Herrero4">[10]See also</afont></supspan></p><p><a id="See_also" name="See_also"></astrong></p><h2><span class="editsection"></span><span class="mw-headline">See also</span></h2>
<ul>
<li><a titlefont size="Computational genomics3" href>[[Pangenomics]] and [[Pangenome]]</font></li> <li><font size="http:3">[[Personal Genome Project]]</font></en.wikipedia.orgli> <li><font size="3">[[Omics]] </wikifont></Computational_genomicsli> <li><font size="3">Computational genomics[[Proteomics]] </afont></li> <li><a titlefont size="Nitrogenomics3" href>[[Interactomics]] </font></li> <li><font size="http:3">[[Functional genomics]] </font></en.wikipedia.orgli> <li><font size="3">[[Computational genomics]] </wikifont></li> <li><font size="3">[[Nitrogenomics]]</font></li> <li><font size="3">Nitrogenomics[[Pathogenomics]]</afont></li>
</ul>
<p><a id="References" name="References">&nbsp;</ap></p><h2strong><span class="editsectionmw-headline"></span><span classfont size="mw-headline4">References</font></span></h2strong></p>
<ol class="references">
<li id="_note-0"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-0">^</a></strong> Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8</font></li> <li id="_note-1"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-1">^</a></strong> Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976</font></li> <li id="_note-2"><strongfont size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-2">^</a></strong> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95</font></li> <li id="_note-3"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-3">^</a></strong> <a relclass="nofollowexternal text" title="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html" classrel="external textnofollow" href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html"><em>The Viral Genomes Resource</em>, NCBI Friday, 14 September, 2007</a></font></li> <li id="_note-4"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-4">^</a></strong> <a relclass="nofollowexternal text" title="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html" classrel="external textnofollow" href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html"><em>Genome Project Statistic</em>, NCBI Friday, 14 September, 2007</a></font></li> <li id="_note-5"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-5">^</a></strong> <a relclass="nofollowexternal text" title="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm" classrel="external textnofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm">BBC article <em>Human gene number slashed</em> from Wednesday, 20 October, 2004</a></font></li> <li id="_note-6"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-6">^</a></strong> <a relclass="nofollowexternal text" title="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml" classrel="external textnofollow" href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml">CBSE News, Thursday October 16, 2003</a></font></li> <li id="_note-7"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-7">^</a></strong> <a relclass="nofollowexternal text" title="http://www.genome.gov/12511476" classrel="external textnofollow" href="http://www.genome.gov/12511476">NHGRI, pressrelease of the publishing of the dog genome</a></font></li> <li id="_note-McGrath"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-McGrath_0">^</a></strong> <cite style="fontFONT-styleSTYLE: normal;" class="book">Mc Grath S and van Sinderen D (editors). (2007). <em><a relclass="nofollowexternal text" title="http://www.horizonpress.com/phage" classrel="external textnofollow" href="http://www.horizonpress.com/phage">Bacteriophage: Genetics and Molecular Biology</a></em>, 1st ed., Caister Academic Press. <a relclass="nofollowexternal text" title="http://www.horizonpress.com/phage" classrel="external textnofollow" href="http://www.horizonpress.com/phage">ISBN 978-1-904455-14-1</a> .</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bacteriophage%3A+Genetics+and+Molecular+Biology&amp;rft.au=Mc+Grath+S+and+van+Sinderen+D+%28editors%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fphage" class="Z3988">&nbsp;</span></font></li> <li id="_note-Herrero"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-Herrero_0">^</a></strong> <cite style="fontFONT-styleSTYLE: normal;" class="book">Herrero A and Flores E (editor). (2008). <em><a relclass="nofollowexternal text" title="http://www.horizonpress.com/cyan" classrel="external textnofollow" href="http://www.horizonpress.com/cyan">The Cyanobacteria: Molecular Biology, Genomics and Evolution</a></em>, 1st ed., Caister Academic Press. <a relclass="nofollowexternal text" title="http://www.horizonpress.com/cyan" classrel="external textnofollow" href="http://www.horizonpress.com/cyan">ISBN 978-1-904455-15-8</a> .</cite></font><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan" class><font size="Z39883"> </font> <br />
</span></li>
</ol>
<p><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan"><font size="5"><br />
Web links</font><br />
[http://en.wikipedia.org/wiki/Genomics Wikipedia Genomics link]<br />
[http://omics.org Omics.org]<br />
[http://totalomics.com Totalomics.com]<br />
</span></p>
<p>[http://www.news-medical.net/health/What-is-Genomics.aspx What is Genomics? from News-Medical.net]</p>
1,007
edits