Difference between revisions of "Prostate cancer genomes sequenced by Broad and Dana Faber"

From kogic.kr
(Created page with "<p><a href="http://www.bionews.org.uk/page_89234.asp">http://www.bionews.org.uk/page_89234.asp</a></p> <h1 class="page-header">Letter abstract</h1> <hr class="separator" /> <p id...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<p><a href="http://www.bionews.org.uk/page_89234.asp">http://www.bionews.org.uk/page_89234.asp</a></p>
+
<p><a href="http://www.ncbi.nlm.nih.gov/pubmed/21307934">http://www.ncbi.nlm.nih.gov/pubmed/21307934</a></p>
<h1 class="page-header">Letter abstract</h1>
 
<hr class="separator" />
 
<p id="cite"><span class="journalname">Nature Genetics</span> <span class="b">39</span>, 645 - 649 (2007) <br />
 
Published online: 1 April 2007 | <span class="doi"><abbr title="Digital Object Identifier">doi</abbr>:10.1038/ng2022</span></p>
 
<p id="errorcor">&nbsp;</p>
 
<h2 id="atl">Genome-wide association study of prostate cancer identifies a second risk locus at 8q24</h2>
 
<p id="aug">Meredith Yeager<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a1">1</a>,</sup><sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Nick Orr<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a3">3</a></sup>, Richard B Hayes<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Kevin B Jacobs<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a4">4</a></sup>, Peter Kraft<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a5">5</a></sup>, Sholom Wacholder<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Mark J Minichiello<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a6">6</a></sup>, Paul Fearnhead<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a7">7</a></sup>, Kai Yu<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Nilanjan Chatterjee<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Zhaoming Wang<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a1">1</a>,</sup><sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Robert Welch<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a1">1</a>,</sup><sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Brian J Staats<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a1">1</a>,</sup><sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Eugenia E Calle<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a8">8</a></sup>, Heather Spencer Feigelson<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a8">8</a></sup>, Michael J Thun<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a8">8</a></sup>, Carmen Rodriguez<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a8">8</a></sup>, Demetrius Albanes<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Jarmo Virtamo<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a9">9</a></sup>, Stephanie Weinstein<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Fredrick R Schumacher<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a5">5</a></sup>, Edward Giovannucci<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a10">10</a></sup>, Walter C Willett<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a10">10</a></sup>, Geraldine Cancel-Tassin<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a11">11</a></sup>, Olivier Cussenot<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a11">11</a></sup>, Antoine Valeri<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a11">11</a></sup>, Gerald L Andriole<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a12">12</a></sup>, Edward P Gelmann<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a13">13</a></sup>, Margaret Tucker<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Daniela S Gerhard<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a14">14</a></sup>, Joseph F Fraumeni, Jr<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, Robert Hoover<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup>, David J Hunter<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a>,</sup><sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a5">5</a></sup>, Stephen J Chanock<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a>,</sup><sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a3">3</a></sup> &amp; Gilles Thomas<sup><a title="affiliated with " href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#a2">2</a></sup></p>
 
<div id="abs"><a class="backtotop" href="http://www.nature.com/ng/journal/v39/n5/abs/ng2022.html#top">Top<span class="hidden"> of page</span></a>
 
<p class="lead">Recently, common variants on human chromosome 8q24 were found to be associated with prostate cancer risk. While conducting a genome-wide association study in the Cancer Genetic Markers of Susceptibility project with 550,000 SNPs in a nested case-control study (1,172 cases and 1,157 controls of European origin), we identified a new association at 8q24 with an independent effect on prostate cancer susceptibility. The most significant signal is 70 kb centromeric to the previously reported SNP, rs1447295, but shows little evidence of linkage disequilibrium with it. A combined analysis with four additional studies (total: 4,296 cases and 4,299 controls) confirms association with prostate cancer for rs6983267 in the centromeric locus (<i>P</i> = 9.42 <img style="border-bottom: 0px; border-left: 0px; vertical-align: middle; border-top: 0px; border-right: 0px" alt="times" src="http://www.nature.com/__chars/math/special/times/black/med/base/glyph.gif" /> 10<sup>-13</sup>; heterozygote odds ratio (OR): 1.26, 95% confidence interval (c.i.): 1.13&ndash;1.41; homozygote OR: 1.58, 95% c.i.: 1.40&ndash;1.78). Each SNP remained significant in a joint analysis after adjusting for the other (rs1447295 <i>P</i> = 1.41 <img style="border-bottom: 0px; border-left: 0px; vertical-align: middle; border-top: 0px; border-right: 0px" alt="times" src="http://www.nature.com/__chars/math/special/times/black/med/base/glyph.gif" /> 10<sup>-11</sup>; rs6983267 <i>P</i> = 6.62 <img style="border-bottom: 0px; border-left: 0px; vertical-align: middle; border-top: 0px; border-right: 0px" alt="times" src="http://www.nature.com/__chars/math/special/times/black/med/base/glyph.gif" /> 10<sup>-10</sup>). These observations, combined with compelling evidence for a recombination hotspot between the two markers, indicate the presence of at least two independent loci within 8q24 that contribute to prostate cancer in men of European ancestry. We estimate that the population attributable risk of the new locus, marked by rs6983267, is higher than the locus marked by rs1447295 (21% versus 9%).</p>
 
</div>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 +
<p><span style="font-size: medium"><br />
 +
Nature. 2011 Feb 10;470(7333):214-20.</span></p>
 +
<p><span style="font-size: small">The genomic complexity of primary human prostate cancer.<br />
 +
Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA.</span></p>
 +
<p><span style="font-size: medium">The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.</span></p>
 +
<p><b><span style="font-size: small">Abstract<br />
 +
</span></b><span style="font-size: small">Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, 'copy-neutral') rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.</span></p>
 +
<p>PMID: 21307934 [PubMed - indexed for MEDLINE]</p>
 +
<p><br />
 +
Publication Types, MeSH Terms, Substances, Grant SupportPublication Types: <br />
 +
Research Support, N.I.H., Extramural<br />
 +
Research Support, Non-U.S. Gov't<br />
 +
Research Support, U.S. Gov't, Non-P.H.S.<br />
 +
MeSH Terms:<br />
 +
Carrier Proteins/genetics<br />
 +
Case-Control Studies<br />
 +
Cell Adhesion Molecules/genetics<br />
 +
Chromatin/genetics<br />
 +
Chromatin/metabolism<br />
 +
Chromosome Aberrations<br />
 +
Chromosome Breakpoints<br />
 +
Epigenesis, Genetic/genetics<br />
 +
Gene Expression Regulation, Neoplastic<br />
 +
Genome, Human/genetics*<br />
 +
Humans<br />
 +
Male<br />
 +
PTEN Phosphohydrolase/genetics<br />
 +
PTEN Phosphohydrolase/metabolism<br />
 +
Prostatic Neoplasms/genetics*<br />
 +
Recombination, Genetic/genetics<br />
 +
Signal Transduction/genetics<br />
 +
Transcription, Genetic<br />
 +
Substances:<br />
 +
AIP1 protein, human<br />
 +
CADM2 protein, human<br />
 +
Carrier Proteins<br />
 +
Cell Adhesion Molecules<br />
 +
Chromatin<br />
 +
PTEN protein, human<br />
 +
PTEN Phosphohydrolase<br />
 +
Grant Support:<br />
 +
2 P50 CA090381-11/CA/NCI NIH HHS/United States<br />
 +
Howard Hughes Medical Institute/United States<br />
 +
LinkOut - more resources</p>

Latest revision as of 12:59, 7 March 2011

http://www.ncbi.nlm.nih.gov/pubmed/21307934

 


Nature. 2011 Feb 10;470(7333):214-20.

The genomic complexity of primary human prostate cancer.
Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA.

The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.

Abstract
Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, 'copy-neutral') rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.

PMID: 21307934 [PubMed - indexed for MEDLINE]


Publication Types, MeSH Terms, Substances, Grant SupportPublication Types:
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
MeSH Terms:
Carrier Proteins/genetics
Case-Control Studies
Cell Adhesion Molecules/genetics
Chromatin/genetics
Chromatin/metabolism
Chromosome Aberrations
Chromosome Breakpoints
Epigenesis, Genetic/genetics
Gene Expression Regulation, Neoplastic
Genome, Human/genetics*
Humans
Male
PTEN Phosphohydrolase/genetics
PTEN Phosphohydrolase/metabolism
Prostatic Neoplasms/genetics*
Recombination, Genetic/genetics
Signal Transduction/genetics
Transcription, Genetic
Substances:
AIP1 protein, human
CADM2 protein, human
Carrier Proteins
Cell Adhesion Molecules
Chromatin
PTEN protein, human
PTEN Phosphohydrolase
Grant Support:
2 P50 CA090381-11/CA/NCI NIH HHS/United States
Howard Hughes Medical Institute/United States
LinkOut - more resources