Changes

From kogic.kr
m
no edit summary
=== '''the Dendronephthya gigantea 게놈 어셈블리와 다른   자포동물(Cnidarians) 비교통계''' ===
[[File<img style="null" src=http:Pasted image 0//in.kogic.kr/images/9/90/Pasted_image_0.png|RTENOTITLE]]>
&nbsp;
우리는 두 가지 다른 방법을 사용하여&nbsp; D. gigantea에서 29,000개에 가까운 단백질 코딩 유전자(protein-coding genes)를 발견했다(보완표 1, 온라인 보충자료 참조). 1차 접근방식과 2차 접근방식은 각각 D. gigantea게놈의 단백질 코딩 유전자(protein-coding genes)를 2만8879개, 2만8937개로 예측했다. 비교 가능한 높은 품질을 보인 BUSCO (version 3.0.2) (Simão et al. 2015; Waterhouse et al. 2018)를 사용하여 두 유전자 세트를 비교하여 예측 유전자 세트에 대한 신뢰도를 높였다. 첫 번째 방법으로 얻은 유전자 세트는 두 번째 방법(93.35%)보다 약간 높은 품질(93.97% 완성 BUSCO 유전자)을 보였다(부록표 2, 보충재료 온라인) D. Giganta 유전자 세트는 cnidians 중에서 품질이 높았으며 complete BUSCO ortholog benchmark genes의 ~94%를 차지했다(부록 그림 2, Supplementary Material 온라인).&nbsp; D. gigantea 유전자 모델의 품질을 6명의 cnidarians (Aiptasia pallida, Acropora digitifera, Hydra magnipapillata, Nematostella vectensis, Ovidicella faveolata, Stylophora pistillata)와 비교했다. D. Giganta 유전자 모델은&nbsp; single copy BUSCO genes을 ~87% 완성했다(부록 그림 2, Supplementary Material 온라인). 또한 cnidarian(부록 그림 2, Supplementary Material online) 중 single copy 및 duplicated genes를 모두 포함하는 complete BUSCO genes (~94%)가 두 번째로 높았다. D. gigantea 게놈의 거의 12%가 반복 요소(repeat elements)로 이루어져 있다. D. giganta 게놈의 11.97%를 차지하는 것을 발견했으며, tandem repeatment와 long terminal repeat 요소(LTR)가 각각 게놈의 7.24%와 2.25%를 나타낸다. (부록표 3, 보충 자료 온라인).
'''계통 발생 학적 분석 및 Hox 유전자 클러스터 식별'''<br/> 우리는 D. gigantea가 우리의 계산에 근거하여 가장 빠른 거식 종들 사이에서 분기되었다는 것을 발견했다. 우리는 D. gigantea가 싱글 톤을 제외한 12,597 개의 이종 상동 유전자 군을 포함하고 있으며 이들 중 3,656 개는 돌이 많은 산호 (Orbicella faveolata, Stylophora pistillata 및 Acropora digitifera)와 hydra (Hydra magnipapillata) (보충 그림 3, 보충 자료 온라인)와 공유되는 것으로 확인되었다. ). 총 4,863 개의 유전자 패밀리가 D. gigantea- 특이 적이었다 (보충 그림 3, 보충 자료 온라인). 둘째, 우리는 분자 계통 발생 학적 분석을 사용하여octocoral, D. gigantea가 육식과 수생 동물 사이에 위치하고 있음을 보여준다 (그림 1A). 발산 시간 추정 분석은 다른 3 개의 돌 산호 (O. faveolata, S. pistillata 및 A. digitifera)로부터의 octocoral&nbsp;(D. gigantea)의 발산이 544 MYA (그림 1A)가 발생했음을 제안했다.
[[File<br/> 우리는 D. gigantea가 우리의 계산에 근거하여 가장 빠른 거식 종들 사이에서 분기되었다는 것을 발견했다. 우리는 D. gigantea가 싱글 톤을 제외한 12,597 개의 이종 상동 유전자 군을 포함하고 있으며 이들 중 3,656 개는 돌이 많은 산호 (Orbicella faveolata, Stylophora pistillata 및 Acropora digitifera)와 hydra (Hydra magnipapillata) (보충 그림 3, 보충 자료 온라인)와 공유되는 것으로 확인되었다. ). 총 4,863 개의 유전자 패밀리가 D. gigantea- 특이 적이었다 (보충 그림 3, 보충 자료 온라인). 둘째, 우리는 분자 계통 발생 학적 분석을 사용하여octocoral, D. gigantea가 육식과 수생 동물 사이에 위치하고 있음을 보여준다 (그림 1A). 발산 시간 추정 분석은 다른 3 개의 돌 산호 (O. faveolata, S. pistillata 및 A. digitifera)로부터의 octocoral&nbsp;(D. gigantea)의 발산이 544 MYA (그림 1A)가 발생했음을 제안했다. <img style="null" src=http://in.kogic.kr/images/3/33/Evz043f1.jpg|RTENOTITLE]]>
'''무화과. 1.'''
—Dendronephthya gigantea 및 기타 종의 생리 학적 관계 및 Hox 유전자 클러스터. (A) 나무는 15 종 중 발산 시간이있는 계통 발생을 보여준다. 각 분기의 숫자는 예상 발산 시간 (MYA)을 나타낸다. (B) 녹색 점선 박스는 Hox 유전자 클러스터 (HoxA, HoxB, HoxC, HoxDa, HoxDb, HoxE 및 HoxF)를 나타내고, 노란색 점선 박스는 EGF 유전자 클러스터 (Evex 및 Gbx)를 나타내며, 청색 점선 박스를 나타낸다 는 ParaHox 유전자 클러스터 (CDX 및 GSX)를 나타냅니다. 박스 수는 게놈에서 각 유전자 카피 수를 나타낸다.
 
&nbsp;
또한 연한 산호와 돌이 많은 산호 사이의 Hox (Homeobox) 유전자의 차이점을 조사했다. Hox 유전자는 발달 동안 다양한 역할을 수행하는 전사 인자를 암호화한다 (Akam 1995). 그들은 신체 계획을 정의하는 것으로 가장 잘 알려져 있다 (Akam 1995). 우리는 3 개의 돌이 많은 산호가 유사하고 친숙한 Hox 유전자 클러스터 패턴을 가지고 있음을 발견했다 (Ying et al. 2018) (그림 1B). 그러나 Hox 유전자의 Antp 수퍼 클래스 (Patel and Prince 2000)의 구성원 인 Evx는 D. gigantea (그림 1B)에는 실험적으로 검증되어야 할 발견이 없다.&nbsp;
== '''인용문헌''' ==
#
Akam M. 1995. Hox genes and the evolution of diverse body plans. Philos Trans R Soc Lond B Biol Sci. 349(1329):313–319. [[https://www.ncbi.nlm.nih.gov/pubmed/8577843 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Philos+Trans+R+Soc+Lond+B+Biol+Sci.&title=Hox+genes+and+the+evolution+of+diverse+body+plans&author=M.+Akam&volume=349&issue=1329&publication_year=1995&pages=313-319&pmid=8577843& Google Scholar]]
#
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. [[https://www.ncbi.nlm.nih.gov/pubmed/2231712 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=J+Mol+Biol&title=Basic+local+alignment+search+tool&author=SF+Altschul&author=W+Gish&author=W+Miller&author=EW+Myers&author=DJ.+Lipman&volume=215&issue=3&publication_year=1990&pages=403-410&pmid=2231712& Google Scholar]]
#
Baumgarten S, et al. 2015. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A. 112(38):11893–11898. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586855/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/26324906 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Proc+Natl+Acad+Sci+U+S+A&title=The+genome+of+Aiptasia,+a+sea+anemone+model+for+coral+symbiosis&author=S+Baumgarten&volume=112&issue=38&publication_year=2015&pages=11893-11898&pmid=26324906& Google Scholar]]
#
Carpenter KE, et al. 2008. One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts. science 321: 560–563. doi: 10.1126/science.1159196. [[https://www.ncbi.nlm.nih.gov/pubmed/18653892 PubMed]]
#
Chin C-S, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 13(12):1050. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503144/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/27749838 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Nat+Methods&title=Phased+diploid+genome+assembly+with+single-molecule+real-time+sequencing&author=C-S+Chin&volume=13&issue=12&publication_year=2016&pages=1050&pmid=27749838& Google Scholar]]
#
de Paula AF, Creed JC.. 2004. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bull Mar Sci. 74:175–183. [[https://scholar.google.com/scholar_lookup?journal=Bull+Mar+Sci&title=Two+species+of+the+coral+Tubastraea+(Cnidaria,+Scleractinia)+in+Brazil:+a+case+of+accidental+introduction&author=AF+de+Paula&author=JC.+Creed&volume=74&publication_year=2004&pages=175-183& Google Scholar]]
#
de Putron SJ, McCorkle DC, Cohen AL, Dillon A.. 2011. The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs 30:321–328. [[https://scholar.google.com/scholar_lookup?journal=Coral+Reefs&title=The+impact+of+seawater+saturation+state+and+bicarbonate+ion+concentration+on+calcification+by+new+recruits+of+two+Atlantic+corals&author=SJ+de+Putron&author=DC+McCorkle&author=AL+Cohen&author=A.+Dillon&volume=30&publication_year=2011&pages=321-328& Google Scholar]]
#
Ellegren H, Galtier N.. 2016. Determinants of genetic diversity. Nat Rev Genet. 17(7):422.. [[https://www.ncbi.nlm.nih.gov/pubmed/27265362 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Nat+Rev+Genet.&title=Determinants+of+genetic+diversity&author=H+Ellegren&author=N.+Galtier&volume=17&issue=7&publication_year=2016&pages=422.&pmid=27265362& Google Scholar]]
#
Finn RD, Clements J, Eddy SR.. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39(Suppl):W29–W37. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125773/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/21593126 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Nucleic+Acids+Res.&title=HMMER+web+server:+interactive+sequence+similarity+searching&author=RD+Finn&author=J+Clements&author=SR.+Eddy&volume=39(Suppl)&publication_year=2011&pages=W29-W37&pmid=21593126& Google Scholar]]
#
Finn RD, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1):D279–D285. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702930/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/26673716 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Nucleic+Acids+Res.&title=The+Pfam+protein+families+database:+towards+a+more+sustainable+future&author=RD+Finn&volume=44&issue=D1&publication_year=2016&pages=D279-D285&pmid=26673716& Google Scholar]]
#
Friedlander AM, Parrish JD.. 1998. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol. 224:1–30. [[https://scholar.google.com/scholar_lookup?journal=J+Exp+Mar+Biol+Ecol&title=Habitat+characteristics+affecting+fish+assemblages+on+a+Hawaiian+coral+reef&author=AM+Friedlander&author=JD.+Parrish&volume=224&publication_year=1998&pages=1-30& Google Scholar]]
#
Gili J-M, Coma R.. 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol. 13(8):316–321. [[https://www.ncbi.nlm.nih.gov/pubmed/21238320 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Trends+Ecol+Evol&title=Benthic+suspension+feeders:+their+paramount+role+in+littoral+marine+food+webs&author=J-M+Gili&author=R.+Coma&volume=13&issue=8&publication_year=1998&pages=316-321&pmid=21238320& Google Scholar]]
#
Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res. 50:839–866. [[https://scholar.google.com/scholar_lookup?journal=Mar+Freshwater+Res.&title=Climate+change,+coral+bleaching+and+the+future+of+the+world’s+coral+reefs&author=O.+Hoegh-Guldberg&volume=50&publication_year=1999&pages=839-866& Google Scholar]]
#
Hwang S-J, Song J-I.. 2007. Reproductive biology and larval development of the temperate soft coral Dendronephthya gigantea (Alcyonacea: Nephtheidae). Mar Biol. 152:273–284. [[https://scholar.google.com/scholar_lookup?journal=Mar+Biol.&title=Reproductive+biology+and+larval+development+of+the+temperate+soft+coral+Dendronephthya+gigantea+(Alcyonacea:+Nephtheidae)&author=S-J+Hwang&author=J-I.+Song&volume=152&publication_year=2007&pages=273-284& Google Scholar]]
#
Imbs AB, et al. 2007. Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species. Comp Biochem Physiol B Biochem Mol Biol. 148(3):314–321. [[https://www.ncbi.nlm.nih.gov/pubmed/17644017 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Comp+Biochem+Physiol+B+Biochem+Mol+Biol&title=Comparison+of+fatty+acid+compositions+of+azooxanthellate+Dendronephthya+and+zooxanthellate+soft+coral+species&author=AB+Imbs&volume=148&issue=3&publication_year=2007&pages=314-321&pmid=17644017& Google Scholar]]
#
Inoue S, Kayanne H, Yamamoto S, Kurihara H.. 2013. Spatial community shift from hard to soft corals in acidified water. Nat Climate Change. 3:683. [[https://scholar.google.com/scholar_lookup?journal=Nat+Climate+Change&title=Spatial+community+shift+from+hard+to+soft+corals+in+acidified+water&author=S+Inoue&author=H+Kayanne&author=S+Yamamoto&author=H.+Kurihara&volume=3&publication_year=2013&pages=683.& Google Scholar]]
#
Jones P, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998142/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/24451626 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Bioinformatics&title=InterProScan+5:+genome-scale+protein+function+classification&author=P+Jones&volume=30&issue=9&publication_year=2014&pages=1236-1240&pmid=24451626& Google Scholar]]
#
Kumar S, Stecher G, Suleski M, Hedges SB.. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 34(7):1812–1819. [[https://www.ncbi.nlm.nih.gov/pubmed/28387841 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Mol+Biol+Evol.&title=TimeTree:+a+resource+for+timelines,+timetrees,+and+divergence+times&author=S+Kumar&author=G+Stecher&author=M+Suleski&author=SB.+Hedges&volume=34&issue=7&publication_year=2017&pages=1812-1819&pmid=28387841& Google Scholar]]
#
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv 1303:3997. [[https://scholar.google.com/scholar_lookup?journal=arXiv+Preprint+arXiv&title=Aligning+sequence+reads,+clone+sequences+and+assembly+contigs+with+BWA-MEM&author=H.+Li&volume=1303&publication_year=2013&pages=3997& Google Scholar]]
#
Li L, Stoeckert CJ, Roos DS.. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13(9):2178–2189. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403725/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/12952885 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Genome+Res.&title=OrthoMCL:+identification+of+ortholog+groups+for+eukaryotic+genomes&author=L+Li&author=CJ+Stoeckert&author=DS.+Roos&volume=13&issue=9&publication_year=2003&pages=2178-2189&pmid=12952885& Google Scholar]]
#
Lipman DJ, et al. 2016. GenBank. Nucleic acids research 45: D37–D42. doi: 10.1093/nar/gkw1070. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210553/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/27899564 PubMed]]
#
Liu B, et al. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv Preprint arXiv 1308:2012. [[https://scholar.google.com/scholar_lookup?journal=arXiv+Preprint+arXiv&title=Estimation+of+genomic+characteristics+by+analyzing+k-mer+frequency+in+de+novo+genome+projects&author=B+Liu&volume=1308&publication_year=2013&pages=2012& Google Scholar]]
#
Lopes AR, et al. 2018. Physiological resilience of a temperate soft coral to ocean warming and acidification. Cell Stress and Chaperones 23: 1093–1100. doi: 10.1007/s12192-018-0919-9. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111073/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/29948929 PubMed]] [[https://scholar.google.com/scholar?q=Lopes+AR,+et+al.+2018.+Physiological+resilience+of+a+temperate+soft+coral+to+ocean+warming+and+acidification.+Cell+Stress+and+Chaperones+23:+1093–1100.+doi:+10.1007/s12192-018-0919-9.+ Google Scholar]]
#
Mitchell AL, et al. 2018. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic acids research 47: D351–D360. doi: 10.1093/nar/gky1100. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323941/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/30398656 PubMed]] [[https://scholar.google.com/scholar?q=Mitchell+AL,+et+al.+2018.+InterPro+in+2019:+improving+coverage,+classification+and+access+to+protein+sequence+annotations.+Nucleic+acids+research+47:+D351–D360.+doi:+10.1093/nar/gky1100.+ Google Scholar]]
#
Pandolfi JM, Connolly SR, Marshall DJ, Cohen ALJs.. 2011. Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. [[https://www.ncbi.nlm.nih.gov/pubmed/21778392 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Science&title=Projecting+coral+reef+futures+under+global+warming+and+ocean+acidification&author=JM+Pandolfi&author=SR+Connolly&author=DJ+Marshall&author=ALJs.+Cohen&volume=333&publication_year=2011&pages=418-422&pmid=21778392& Google Scholar]]
#
Patel NH, Prince VE.. 2000. Beyond the Hox complex. Genome Biol. 1(5):reviews1027–reviews1021. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138885/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/11178261 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Genome+Biol.&title=Beyond+the+Hox+complex&author=NH+Patel&author=VE.+Prince&volume=1&issue=5&publication_year=2000&pages=reviews1027-reviews1021&pmid=11178261& Google Scholar]]
#
Putnam NH, et al. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94. [[https://www.ncbi.nlm.nih.gov/pubmed/17615350 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Science&title=Sea+anemone+genome+reveals+ancestral+eumetazoan+gene+repertoire+and+genomic+organization&author=NH+Putnam&volume=317&issue=5834&publication_year=2007&pages=86-94&pmid=17615350& Google Scholar]]
#
Ries J, Cohen A, McCorkle D.. 2010. A nonlinear calcification response to CO2-induced ocean acidification by the coral oculina Arbuscula. Coral Reefs 29:661–674. [[https://scholar.google.com/scholar_lookup?journal=Coral+Reefs&title=A+nonlinear+calcification+response+to+CO2-induced+ocean+acidification+by+the+coral+oculina+Arbuscula&author=J+Ries&author=A+Cohen&author=D.+McCorkle&volume=29&publication_year=2010&pages=661-674& Google Scholar]]
#
Santodomingo N, et al. 2013. Diversity and distribution of azooxanthellate corals in the Colombian Caribbean. Mar Biodivers. 43:7–22. [[https://scholar.google.com/scholar_lookup?journal=Mar+Biodivers&title=Diversity+and+distribution+of+azooxanthellate+corals+in+the+Colombian+Caribbean&author=N+Santodomingo&volume=43&publication_year=2013&pages=7-22& Google Scholar]]
#
Shinzato C, et al. 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476(7360):320. [[https://www.ncbi.nlm.nih.gov/pubmed/21785439 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Nature&title=Using+the+Acropora+digitifera+genome+to+understand+coral+responses+to+environmental+change&author=C+Shinzato&volume=476&issue=7360&publication_year=2011&pages=320&pmid=21785439& Google Scholar]]
#
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. [[https://www.ncbi.nlm.nih.gov/pubmed/26059717 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Bioinformatics&title=BUSCO:+assessing+genome+assembly+and+annotation+completeness+with+single-copy+orthologs&author=FA+Simão&author=RM+Waterhouse&author=P+Ioannidis&author=EV+Kriventseva&author=EM.+Zdobnov&volume=31&issue=19&publication_year=2015&pages=3210-3212&pmid=26059717& Google Scholar]]
#
Snelling J, Dziedzic K, Guermond S, Meyer E 2017a. Development of an integrated genomic map for a threatened Caribbean coral (Orbicella faveolata). bioRxiv: 183467. doi: 10.1101/183467.
#
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998144/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/24451623 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Bioinformatics&title=RAxML+version+8:+a+tool+for+phylogenetic+analysis+and+post-analysis+of+large+phylogenies&author=A.+Stamatakis&volume=30&issue=9&publication_year=2014&pages=1312-1313&pmid=24451623& Google Scholar]]
#
Stanke M, Diekhans M, Baertsch R, Haussler D.. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24(5):637–644. [[https://www.ncbi.nlm.nih.gov/pubmed/18218656 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Bioinformatics&title=Using+native+and+syntenically+mapped+cDNA+alignments+to+improve+de+novo+gene+finding&author=M+Stanke&author=M+Diekhans&author=R+Baertsch&author=D.+Haussler&volume=24&issue=5&publication_year=2008&pages=637-644&pmid=18218656& Google Scholar]]
#
van de Water JA, Allemand D, Ferrier-Pagès C.. 2018. Host-microbe interactions in octocoral holobionts-recent advances and perspectives. Microbiome 6:64.. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880021/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/29609655 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Microbiome&title=Host-microbe+interactions+in+octocoral+holobionts-recent+advances+and+perspectives&author=JA+van+de+Water&author=D+Allemand&author=C.+Ferrier-Pagès&volume=6&publication_year=2018&pages=64.&pmid=29609655& Google Scholar]]
#
Voolstra CR, et al. 2017. Comparative analysis of the genomes of stylophora pistillata and acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep. 7(1):17583. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730576/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/29242500 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Sci+Rep&title=Comparative+analysis+of+the+genomes+of+stylophora+pistillata+and+acropora+digitifera+provides+evidence+for+extensive+differences+between+species+of+corals&author=CR+Voolstra&volume=7&issue=1&publication_year=2017&pages=17583&pmid=29242500& Google Scholar]]
#
Waterhouse RM, et al. 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 35(3):543–548. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850278/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/29220515 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Mol+Biol+Evol.&title=BUSCO+applications+from+quality+assessments+to+gene+prediction+and+phylogenomics&author=RM+Waterhouse&volume=35&issue=3&publication_year=2018&pages=543-548& Google Scholar]]
#
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. [[https://www.ncbi.nlm.nih.gov/pubmed/17483113 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Mol+Biol+Evol.&title=PAML+4:+phylogenetic+analysis+by+maximum+likelihood&author=Z.+Yang&volume=24&issue=8&publication_year=2007&pages=1586-1591&pmid=17483113& Google Scholar]]
#
Ying H, et al. 2018. Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biol. 19:175.. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214176/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/30384840 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Genome+Biol&title=Comparative+genomics+reveals+the+distinct+evolutionary+trajectories+of+the+robust+and+complex+coral+lineages&author=H+Ying&volume=19&publication_year=2018&pages=175.&pmid=30384840& Google Scholar]]
#
Zhong YF, Butts T, Holland PW.. 2008. HomeoDB: a database of homeobox gene diversity. Evol Dev. 10(5):516–518. [[https://www.ncbi.nlm.nih.gov/pubmed/18803769 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Evol+Dev.&title=HomeoDB:+a+database+of+homeobox+gene+diversity&author=YF+Zhong&author=T+Butts&author=PW.+Holland&volume=10&issue=5&publication_year=2008&pages=516-518&pmid=18803769& Google Scholar]]
#
Zhong Y, Holland PW.. 2011. HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol Dev. 13(6):567–568. [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399086/ PMC free article]] [[https://www.ncbi.nlm.nih.gov/pubmed/23016940 PubMed]] [[https://scholar.google.com/scholar_lookup?journal=Evol+Dev.&title=HomeoDB2:+functional+expansion+of+a+comparative+homeobox+gene+database+for+evolutionary+developmental+biology&author=Y+Zhong&author=PW.+Holland&volume=13&issue=6&publication_year=2011&pages=567-568&pmid=23016940& Google Scholar]]
<br/>
&nbsp;
[[Category:Pages with broken file links]]
395
edits

Navigation menu