Open main menu

kogic.kr β

Changes

What is genomics?

49 bytes added, 11:29, 13 April 2011
no edit summary
<p><font size="3">The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts. Genomics inevitably employs high performance computing and bioinformatics technologies.</font><br />
&nbsp;</p>
<ul> <li>[[What is a genome?]]</li></ul><p>&nbsp;<span class="mw-headline"/p><font size="4"p>&nbsp; </fontp></spandiv v:shape="_x0000_s1026">&nbsp;</pdiv>
<div v:shape="_x0000_s1026"><span style="font-size: 32pt"><font color="#339966" size="5">&quot;[[Genome sequencing is not Genomics]]&quot;</font></span></div>
<p><br />
&nbsp;</p>
<p><strong><span class="mw-headline"><font size="4">History of the field</font></span></strong></p>
<p><font size="3">Genomics was practically founded by Fred Sanger group in 1970s when they developed&nbsp;a gene sequencing technique and completed the first genomes[[genome]]s; namely bacteriophage &Phi;-X174; (5,368 bp),&nbsp;the human mitochondrial genome, and lamda virus.</font></p>
<p><font size="3">In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.<sup id="_ref-0" class="reference">[1]</sup> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup id="_ref-1" class="reference">[2]</sup> The first DNA-based genome to be sequenced in its entirety was that of bacteriophage &Phi;-X174; (5,368 bp), sequenced by Frederick Sanger in 1977<sup id="_ref-2" class="reference">[3]</sup>. The first free-living organism to be sequenced was that of <em>Haemophilus influenzae</em> (1.8 Mb) in 1995, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.</font></p>
<p><font size="3">As of September 2007, the complete sequence was known of about 1879 viruses <sup id="_ref-3" class="reference">[4]</sup>, 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. <sup id="_ref-4" class="reference">[5]</sup> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <em>Haemophilus influenzae</em>. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (<em>Saccharomyces cerevisiae</em>) has long been an important model organism for the eukaryotic cell, while the fruit fly <em>Drosophila melanogaster</em> has been a very important tool (notably in early pre-molecular genetics). The worm <em>Caenorhabditis elegans</em> is an often used simple model for multicellular organisms. The zebrafish <em>Brachydanio rerio</em> is used for many developmental studies on the molecular level and the flower <em>Arabidopsis thaliana</em> is a model organism for flowering plants. The Japanese pufferfish (<em>Takifugu rubripes</em>) and the spotted green pufferfish (<em>Tetraodon nigroviridis</em>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup id="_ref-5" class="reference">[6]</sup> <sup id="_ref-6" class="reference">[7]</sup> The mammals dog (<em>Canis familiaris</em>), <sup id="_ref-7" class="reference">[8]</sup> brown rat (<em>Rattus norvegicus</em>), mouse (<em>Mus musculus</em>), and chimpanzee (<em>Pan troglodytes</em>) are all important model animals in medical research.</font></p>