Changes

From kogic.kr

What is genomics

28,195 bytes added, 06:37, 21 October 2011
Created page with "<p><b>Genomics</b> is a discipline in <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> concerning the study of the <a class="mw-redirect" title="Geno..."
<p><b>Genomics</b> is a discipline in <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> concerning the study of the <a class="mw-redirect" title="Genomes" href="http://en.wikipedia.org/wiki/Genomes">genomes</a> of organisms. The field includes intensive efforts to determine the entire <a class="mw-redirect" title="DNA sequence" href="http://en.wikipedia.org/wiki/DNA_sequence">DNA sequence</a> of organisms and fine-scale <a class="mw-redirect" title="Genetic mapping" href="http://en.wikipedia.org/wiki/Genetic_mapping">genetic mapping</a> efforts. The field also includes studies of intragenomic phenomena such as <a title="Heterosis" href="http://en.wikipedia.org/wiki/Heterosis">heterosis</a>, <a title="Epistasis" href="http://en.wikipedia.org/wiki/Epistasis">epistasis</a>, <a title="Pleiotropy" href="http://en.wikipedia.org/wiki/Pleiotropy">pleiotropy</a> and other interactions between loci and alleles within the genome. In contrast, the investigation of the roles and functions of single genes is a primary focus of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a> or <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> and is a common topic of modern medical and biological research. Research of single genes does not fall into the definition of genomics unless the aim of this genetic, pathway, and functional information analysis is to elucidate its effect on, place in, and response to the entire genome's networks.</p>
<p>For the <a title="United States Environmental Protection Agency" href="http://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency">United States Environmental Protection Agency</a>, &quot;the term &quot;genomics&quot; encompasses a broader scope of scientific inquiry associated technologies than when genomics was initially considered. A genome is the sum total of all an individual organism's genes. Thus, genomics is the study of all the genes of a cell, or tissue, at the DNA (genotype), mRNA (transcriptome), or protein (proteome) levels.&quot;<sup class="reference" id="cite_ref-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-0"><span>[</span>1<span>]</span></a></sup></p>
<table class="toc" id="toc">
<tbody>
<tr>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<h2><span id="History" class="mw-headline">History</span></h2>
<p>The first genomes to be sequenced were those of a <a title="Virus" href="http://en.wikipedia.org/wiki/Virus">virus</a> and a <a title="Mitochondrion" href="http://en.wikipedia.org/wiki/Mitochondrion">mitochondrion</a>, and were done by <a class="mw-redirect" title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger">Fred Sanger</a>. His group established techniques of sequencing, genome mapping, data storage, and bioinformatic analyses in the 1970-1980s. A major branch of genomics is still concerned with <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing">sequencing</a> the genomes of various organisms, but the knowledge of full genomes has created the possibility for the field of <a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics">functional genomics</a>, mainly concerned with patterns of <a title="Gene expression" href="http://en.wikipedia.org/wiki/Gene_expression">gene expression</a> during various conditions. The most important tools here are <a title="Microarray" href="http://en.wikipedia.org/wiki/Microarray">microarrays</a> and <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a>. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called <a title="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics">proteomics</a>. A related concept is <a title="Materiomics" href="http://en.wikipedia.org/wiki/Materiomics">materiomics</a>, which is defined as the study of the material properties of biological materials (e.g. hierarchical protein structures and materials, mineralized biological tissues, etc.) and their effect on the macroscopic function and failure in their biological context, linking processes, structure and properties at multiple scales through a materials science approach. The actual term 'genomics' is thought to have been coined by Dr. Tom Roderick, a geneticist at the Jackson Laboratory (Bar Harbor, ME) over beer at a meeting held in Maryland on the mapping of the human genome in 1986.</p>
<p>In 1972, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team at the Laboratory of Molecular Biology of the <a class="mw-redirect" title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent">University of Ghent</a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent">Ghent</a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium">Belgium</a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a> coat protein.<sup class="reference" id="cite_ref-1"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-1"><span>[</span>2<span>]</span></a></sup> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup class="reference" id="cite_ref-2"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-2"><span>[</span>3<span>]</span></a></sup> The first DNA-based genome to be sequenced in its entirety was that of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a> <a class="mw-redirect" title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage">&Phi;-X174;</a> (5,368 <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair">bp</a>), sequenced by <a title="Frederick Sanger" href="http://en.wikipedia.org/wiki/Frederick_Sanger">Frederick Sanger</a> in 1977.<sup class="reference" id="cite_ref-3"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-3"><span>[</span>4<span>]</span></a></sup></p>
<p>The first free-living organism to be sequenced was that of <i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></i> (1.8 <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair">Mb</a>) in 1995<sup class="reference" id="cite_ref-4"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-4"><span>[</span>5<span>]</span></a></sup>, and since then genomes are being sequenced at a rapid pace.</p>
<p>As of September 2007, the complete sequence was known of about 1879 <a title="Virus" href="http://en.wikipedia.org/wiki/Virus">viruses</a>,<sup class="reference" id="cite_ref-5"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-5"><span>[</span>6<span>]</span></a></sup> 577 <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria">bacterial</a> species and roughly 23 <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote">eukaryote</a> organisms, of which about half are <a class="mw-redirect" title="Fungi" href="http://en.wikipedia.org/wiki/Fungi">fungi</a>. <sup class="reference" id="cite_ref-6"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-6"><span>[</span>7<span>]</span></a></sup> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></i>. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (<i><a title="Saccharomyces cerevisiae" href="http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae">Saccharomyces cerevisiae</a></i>) has long been an important <a title="Model organism" href="http://en.wikipedia.org/wiki/Model_organism">model organism</a> for the <a class="mw-redirect" title="Eukaryotic cell" href="http://en.wikipedia.org/wiki/Eukaryotic_cell">eukaryotic cell</a>, while the fruit fly <i><a title="Drosophila melanogaster" href="http://en.wikipedia.org/wiki/Drosophila_melanogaster">Drosophila melanogaster</a></i> has been a very important tool (notably in early pre-molecular <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a>). The worm <i><a title="Caenorhabditis elegans" href="http://en.wikipedia.org/wiki/Caenorhabditis_elegans">Caenorhabditis elegans</a></i> is an often used simple model for <a title="Multicellular organism" href="http://en.wikipedia.org/wiki/Multicellular_organism">multicellular organisms</a>. The zebrafish <i><a class="mw-redirect" title="Brachydanio rerio" href="http://en.wikipedia.org/wiki/Brachydanio_rerio">Brachydanio rerio</a></i> is used for many developmental studies on the molecular level and the flower <i><a title="Arabidopsis thaliana" href="http://en.wikipedia.org/wiki/Arabidopsis_thaliana">Arabidopsis thaliana</a></i> is a model organism for flowering plants. The <a class="mw-redirect" title="Japanese pufferfish" href="http://en.wikipedia.org/wiki/Japanese_pufferfish">Japanese pufferfish</a> (<i><a title="Takifugu rubripes" href="http://en.wikipedia.org/wiki/Takifugu_rubripes">Takifugu rubripes</a></i>) and the <a class="mw-redirect" title="Spotted green pufferfish" href="http://en.wikipedia.org/wiki/Spotted_green_pufferfish">spotted green pufferfish</a> (<i><a title="Tetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Tetraodon_nigroviridis">Tetraodon nigroviridis</a></i>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup class="reference" id="cite_ref-7"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-7"><span>[</span>8<span>]</span></a></sup> <sup class="reference" id="cite_ref-8"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-8"><span>[</span>9<span>]</span></a></sup> The mammals dog (<i><a class="mw-redirect" title="Canis familiaris" href="http://en.wikipedia.org/wiki/Canis_familiaris">Canis familiaris</a></i>), <sup class="reference" id="cite_ref-9"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-9"><span>[</span>10<span>]</span></a></sup> brown rat (<i><a class="mw-redirect" title="Rattus norvegicus" href="http://en.wikipedia.org/wiki/Rattus_norvegicus">Rattus norvegicus</a></i>), mouse (<i><a class="mw-redirect" title="Mus musculus" href="http://en.wikipedia.org/wiki/Mus_musculus">Mus musculus</a></i>), and chimpanzee (<i><a class="mw-redirect" title="Pan troglodytes" href="http://en.wikipedia.org/wiki/Pan_troglodytes">Pan troglodytes</a></i>) are all important model animals in medical research.</p>
<h2><span id="Human_genomics" class="mw-headline">Human genomics</span></h2>
<p>A rough draft of the human genome was completed by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> in early 2001, creating much fanfare. By 2007 the human sequence was declared &quot;finished&quot; (less than one error in 20,000 bases and all chromosomes assembled). Display of the results of the project required significant <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a> resources. The sequence of the human <a class="mw-redirect" title="Reference assembly" href="http://en.wikipedia.org/wiki/Reference_assembly">reference assembly</a> can be explored using the <a title="UCSC Genome Browser" href="http://en.wikipedia.org/wiki/UCSC_Genome_Browser">UCSC Genome Browser</a> or <a title="Ensembl" href="http://en.wikipedia.org/wiki/Ensembl">Ensembl</a>.</p>
<h2><span id="Bacteriophage_genomics" class="mw-headline">Bacteriophage genomics</span></h2>
<p><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophages</a> have played and continue to play a key role in bacterial <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. Historically, they were used to define <a title="Gene" href="http://en.wikipedia.org/wiki/Gene">gene</a> structure and gene regulation. Also the first <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> to be sequenced was a <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a>. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying <a class="mw-redirect" title="Phage" href="http://en.wikipedia.org/wiki/Phage">phage</a> evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of <a title="Prophage" href="http://en.wikipedia.org/wiki/Prophage">prophage</a> sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<sup class="reference" id="cite_ref-McGrath_10-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-McGrath-10"><span>[</span>11<span>]</span></a></sup></p>
<h2><span id="Cyanobacteria_genomics" class="mw-headline">Cyanobacteria genomics</span></h2>
<p>At present there are 24 <a title="Cyanobacteria" href="http://en.wikipedia.org/wiki/Cyanobacteria">cyanobacteria</a> for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></i> strains, seven marine <i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></i> strains, <i><a title="Trichodesmium erythraeum (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Trichodesmium_erythraeum&amp;action=edit&amp;redlink=1">Trichodesmium erythraeum</a></i> IMS101 and <i><a title="Crocosphaera watsonii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Crocosphaera_watsonii&amp;action=edit&amp;redlink=1">Crocosphaera watsonii</a></i> <a title="WH8501 (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=WH8501&amp;action=edit&amp;redlink=1">WH8501</a>. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></i> and marine <i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></i> isolates, <i><a title="Acaryochloris (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Acaryochloris&amp;action=edit&amp;redlink=1">Acaryochloris</a></i> and <i><a title="Prochloron" href="http://en.wikipedia.org/wiki/Prochloron">Prochloron</a></i>, the N<sub>2</sub>-fixing filamentous cyanobacteria <i><a title="Nodularia spumigena (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nodularia_spumigena&amp;action=edit&amp;redlink=1">Nodularia spumigena</a></i>, <i><a title="Lyngbya aestuarii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Lyngbya_aestuarii&amp;action=edit&amp;redlink=1">Lyngbya aestuarii</a></i> and <i><a title="Lyngbya majuscula" href="http://en.wikipedia.org/wiki/Lyngbya_majuscula">Lyngbya majuscula</a></i>, as well as <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophages</a> infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis">photosynthesis</a>, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup class="reference" id="cite_ref-Herrero_11-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-Herrero-11"><span>[</span>12<span>]</span></a></sup></p>
<h2><span id="See_also" class="mw-headline">See also</span></h2>
<ul>
<li><a class="mw-redirect" title="Full Genome Sequencing" href="http://en.wikipedia.org/wiki/Full_Genome_Sequencing">Full Genome Sequencing</a></li>
<li><a title="Computational genomics" href="http://en.wikipedia.org/wiki/Computational_genomics">Computational genomics</a></li>
<li><a title="Nitrogenomics (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nitrogenomics&amp;action=edit&amp;redlink=1">Nitrogenomics</a></li>
<li><a title="Metagenomics" href="http://en.wikipedia.org/wiki/Metagenomics">Metagenomics</a></li>
<li><a class="mw-redirect" title="Predictive Medicine" href="http://en.wikipedia.org/wiki/Predictive_Medicine">Predictive Medicine</a></li>
<li><a title="Personal genomics" href="http://en.wikipedia.org/wiki/Personal_genomics">Personal genomics</a></li>
<li><a class="mw-redirect" title="Psychogenomics" href="http://en.wikipedia.org/wiki/Psychogenomics">Psychogenomics</a></li>
</ul>
<h2><span id="References" class="mw-headline">References</span></h2>
<div style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; list-style-type: decimal;" class="reflist references-column-count references-column-count-2">
<ol class="references">
<li id="cite_note-0"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-0">^</a></b> <a href="http://epa.gov/osa/spc/pdfs/genomics.pdf" class="external text" rel="nofollow">EPA Interim Genomics Policy</a></li>
<li id="cite_note-1"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-1">^</a></b> <span class="citation Journal">Min Jou W, Haegeman G, Ysebaert M, Fiers W (1972). &quot;Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein&quot;. <i>Nature</i> <b>237</b> (5350): 82&ndash;88. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a href="http://dx.doi.org/10.1038%2F237082a0" class="external text" rel="nofollow">10.1038/237082a0</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/4555447" class="external text" rel="nofollow">4555447</a>.</span></li>
<li id="cite_note-2"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-2">^</a></b> <span class="citation Journal">Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M (1976). &quot;Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene&quot;. <i>Nature</i> <b>260</b> (5551): 500&ndash;507. <a title="Bibcode" href="http://en.wikipedia.org/wiki/Bibcode">Bibcode</a> <a href="http://adsabs.harvard.edu/abs/1976Natur.260..500F" class="external text" rel="nofollow">1976Natur.260..500F</a>. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a href="http://dx.doi.org/10.1038%2F260500a0" class="external text" rel="nofollow">10.1038/260500a0</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/1264203" class="external text" rel="nofollow">1264203</a>.</span></li>
<li id="cite_note-3"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-3">^</a></b> <span class="citation Journal">Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). &quot;Nucleotide sequence of bacteriophage phi X174 DNA&quot;. <i>Nature</i> <b>265</b> (5596): 687&ndash;695. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a href="http://dx.doi.org/10.1038%2F265687a0" class="external text" rel="nofollow">10.1038/265687a0</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/870828" class="external text" rel="nofollow">870828</a>.</span></li>
<li id="cite_note-4"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-4">^</a></b> <span class="citation Journal">Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. (1995). &quot;Whole-genome random sequencing and assembly of Haemophilus influenzae Rd&quot;. <i>Science</i> <b>269</b> (5223): 496&ndash;512. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a href="http://dx.doi.org/10.1126%2Fscience.7542800" class="external text" rel="nofollow">10.1126/science.7542800</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a href="http://www.ncbi.nlm.nih.gov/pubmed/7542800" class="external text" rel="nofollow">7542800</a>.</span></li>
<li id="cite_note-5"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-5">^</a></b> <a href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html" class="external text" rel="nofollow"><i>The Viral Genomes Resource</i>, NCBI Friday, 14 September 2007</a></li>
<li id="cite_note-6"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-6">^</a></b> <a href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html" class="external text" rel="nofollow"><i>Genome Project Statistic</i>, NCBI Friday, 14 September 2007</a></li>
<li id="cite_note-7"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-7">^</a></b> <a href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm" class="external text" rel="nofollow">BBC article <i>Human gene number slashed</i> from Wednesday, 20 October 2004</a></li>
<li id="cite_note-8"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-8">^</a></b> <a href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml" class="external text" rel="nofollow">CBSE News, Thursday, 16 October 2003</a></li>
<li id="cite_note-9"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-9">^</a></b> <a href="http://www.genome.gov/12511476" class="external text" rel="nofollow">NHGRI, pressrelease of the publishing of the dog genome</a></li>
<li id="cite_note-McGrath-10"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-McGrath_10-0">^</a></b> <span class="citation book">McGrath S and van Sinderen D, ed (2007). <a href="http://www.horizonpress.com/phage" class="external text" rel="nofollow"><i>Bacteriophage: Genetics and Molecular Biology</i></a> (1st ed.). Caister Academic Press. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/978-1-904455-14-1" href="http://en.wikipedia.org/wiki/Special:BookSources/978-1-904455-14-1">978-1-904455-14-1</a>.</span></li>
<li id="cite_note-Herrero-11"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-Herrero_11-0">^</a></b> <span class="citation book">Herrero A and Flores E, ed (2008). <a href="http://www.horizonpress.com/cyan" class="external text" rel="nofollow"><i>The Cyanobacteria: Molecular Biology, Genomics and Evolution</i></a> (1st ed.). Caister Academic Press. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/978-1-904455-15-8" href="http://en.wikipedia.org/wiki/Special:BookSources/978-1-904455-15-8">978-1-904455-15-8</a>.</span></li>
</ol>
</div>
<h2><span id="External_links" class="mw-headline">External links</span></h2>
<ul>
<li><a href="http://www.genomicsdirectory.com/" class="external text" rel="nofollow">Genomics Directory</a>: A one-stop biotechnology resource center for bioentrepreneurs, scientists, and students</li>
<li><a href="http://arjournals.annualreviews.org/loi/genom/" class="external text" rel="nofollow">Annual Review of Genomics and Human Genetics</a></li>
<li><a href="http://www.biomedcentral.com/bmcgenomics/" class="external text" rel="nofollow">BMC Genomics</a>: A BMC journal on Genomics</li>
<li><a href="http://www.caglab.org/" class="external text" rel="nofollow">Center for Applied Genomics</a>: Genomics Research - a specialized Center of Emphasis at the Children&rsquo;s Hospital of Philadelphia</li>
<li><a href="http://www.genomics.co.uk/companylist.php" class="external text" rel="nofollow">Genomics</a>: UK companies and laboratories* <a href="http://www.elsevier.com/wps/find/journaldescription.cws_home/622838/description#description" class="external text" rel="nofollow">Genomics journal</a></li>
<li><a href="http://www.knoblauchpublishing.com/" class="external text" rel="nofollow">Genomics and Quantitative Genetics</a>: An international electronic, open access journal publishing, inter alia, genomics research.</li>
<li><a href="../../../" class="external text" rel="nofollow">Genomics.org</a>: An openfree wiki based Genomics portal</li>
<li><a href="http://www.genome.gov/" class="external text" rel="nofollow">NHGRI</a>: US government's genome institute</li>
<li><a href="http://www.springer.com/humana+press/pharmacology+and+toxicology/book/978-1-58829-887-4" class="external text" rel="nofollow">Pharmacogenomics in Drug Discovery and Development</a>, a book on pharmacogenomics, diseases, personalized medicine, and therapeutics</li>
<li><a href="http://www.zpu-journal.ru/en/articles/detail.php?ID=342" class="external text" rel="nofollow">Tishchenko P. D. Genomics: New Science in the New Cultural Situation</a></li>
<li><a href="http://www.lcg.unam.mx/" class="external text" rel="nofollow">Undergraduate program on Genomic Sciences (spanish)</a>: One of the first undergraduate programs in the world</li>
<li><a href="http://cmr.jcvi.org/" class="external text" rel="nofollow">JCVI Comprehensive Microbial Resource</a></li>
<li><a href="http://pathema.jcvi.org/" class="external text" rel="nofollow">Pathema: A Clade Specific Bioinformatics Resource Center</a></li>
<li><a href="http://koreagenome.org/" class="external text" rel="nofollow">KoreaGenome.org</a>: The first Korean Genome published and the sequence is available freely.</li>
<li><a href="http://genomicsnetwork.ac.uk/" class="external text" rel="nofollow">GenomicsNetwork</a>: Looks at the development and use of the science and technologies of genomics.</li>
<li><a href="http://www.igs.umaryland.edu/research_topics.php" class="external text" rel="nofollow">Institute for Genome Sciences</a>: Genomics research.</li>
<li><a href="http://ocw.mit.edu/courses/health-sciences-and-technology/hst-512-genomic-medicine-spring-2004/" class="external text" rel="nofollow">MIT OpenCourseWare HST.512 Genomic Medicine</a> A free, self-study course in genomic medicine. Resources include audio lectures and selected lecture notes.</li>
<li><a href="http://www.extension.org/plant_breeding_genomics" class="external text" rel="nofollow">The Plant Breeding and Genomics Community of Practice on eXtension</a> - provides education and training materials for plant breeders and allied professionals</li>
</ul>

Navigation menu