Changes

From kogic.kr
m
no edit summary
== '''​참조''' ==
<div class="mw-empty-elt">#Reich D. et al. . Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2628742/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/19180233/ PubMed] #<br/> <br/> Green R. E. et al. . A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5100745/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20448178/ PubMed] #<br/> <br/> Sheehan S., Harris K. & Song Y. S. Estimating variable effective population sizes from multiple genomes: a sequentially markov conditional sampling distribution approach. Genetics 194, 647–662 (2013). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3697970/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/23608192/ PubMed] #<br/> <br/> Schiffels S. & Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4116295/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24952747/ PubMed] #<br/> <br/> Dewey F. E. et al. . Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet. 7, e1002280 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3174201/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21935354/ PubMed] <br/> .<br/> . #Sudmant PSee all 69 refernences ([https://pubmed. Hncbi. et alnlm. nih. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4568308/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/26249230/ PubMed] #&nbsp; #Lander E. S. et al. . Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/11237011/ PubMed] #&nbsp; #Levy S. et al. . The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1964779/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/17803354/ PubMed] #&nbsp; #Li R. et al. . De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2813482/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20019144/ PubMed] #&nbsp; #Bai H. et al. . The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations. Genome Biol. Evol. 6, 3122–3136 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4540083/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25377941/ PubMed] #&nbsp; #Gnerre S. et al. . High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3029755/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21187386/ PubMed] #&nbsp; #Steinberg K. M. et al. . Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4248323/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25373144/ PubMed] #&nbsp; #Cao H. et al. . De novo assembly of a haplotype-resolved human genome. Nat. Biotechnol. 33, 617–622 (2015). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/26006006/ PubMed] #&nbsp; #Alkan C., Sajjadian S. & Eichler E. E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61–65 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3115693/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21102452/ PubMed] #&nbsp; #Chaisson M. J. et al. . Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4317254/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25383537/ PubMed] #&nbsp; #Huddleston J. et al. . Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24, 688–696 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3975067/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24418700/ PubMed] #&nbsp; #McCoy R. C. et al. . Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4154752/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25188499/ PubMed] #&nbsp; #Dong Y. et al. . Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135–141 (2013). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/23263233/ PubMed] #&nbsp; #Cao H. et al. . Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience 3, 34 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4322599/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25671094/ PubMed] #&nbsp; #Howe K. & Wood J. M. Using optical mapping data for the improvement of vertebrate genome assemblies. Gigascience 4, 10 (2015). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4364110/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25789164/ PubMed] #&nbsp; #Pendleton M. et al. . Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4646949/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/26121404/ PubMed] #&nbsp; #Shi L. et al. . Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun. 7, 12065 (2016). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4931320/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/27356984/ PubMed] #&nbsp; #Church G. M. The personal genome project. Mol. Syst. Biol. 1, 2005.0030 (2005). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1681452/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/16729065/ PubMed] #&nbsp; #The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3042601/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20981092/ PubMed] #&nbsp; #The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3498066/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/23128226/ PubMed] #&nbsp; #Muddyman D., Smee C., Griffin H. & Kaye J. Implementing a successful data-management framework: the UK10K managed access model. Genome Med. 5, 100 (2013). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3978569/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24229443/ PubMed] #&nbsp; #Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24974849/ PubMed] #&nbsp; #Zhang W. et al. . Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population. BMC Bioinformatics 15, S6 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4251052/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25350283/ PubMed] #&nbsp; #The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3173859/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20811451/ PubMed] #&nbsp; #Luo R. et al. . SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3626529/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/23587118/ PubMed] #&nbsp; #Church D. M. et al. . Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3130012/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21750661/ PubMed] #&nbsp; #Pruitt K. D. et al. . RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D759–D763 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3965018/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24259432/ PubMed] #&nbsp; #Koren S. et al. . Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3707490/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/22750884/ PubMed] #&nbsp; #Kersbergen P. et al. . Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genet. 10, 69 (2009). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2775748/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/19860882/ PubMed] #&nbsp; #Li Y. et al. . Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat. Biotechnol. 29, 723–730 (2011). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21785424/ PubMed] #&nbsp; #Li R. et al. . Building the sequence map of the human pan-genome. Nat. Biotechnol. 28, 57–63 (2010). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/19997067/ PubMed] #&nbsp; #Prüfer K. et al. . The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4031459/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24352235/ PubMed] #&nbsp; #Chen R. & Butte A. J. The reference human genome demonstrates high risk of type 1 diabetes and other disorders. Pac. Symp. Biocomput. 231–242 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3732491/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21121051/ PubMed] #&nbsp; #Sherry S. T. et al. . dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc29783/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/11125122/ PubMed] #&nbsp; #Rosenfeld J. A., Mason C. E. & Smith T. M. Limitations of the human reference genome for personalized genomics. PLoS ONE 7, e40294 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3394790/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/22811759/ PubMed] #&nbsp; #Price A. L. et al. . Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/16862161/ PubMed] #&nbsp; #Purcell S. et al. . PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1950838/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/17701901/ PubMed] #&nbsp; #Tosato G. & Cohen J. I. Generation of Epstein-Barr Virus (EBV)-immortalized B cell lines. Curr. Protoc. Immunol. Chapter 7, Unit 7.22 (2007). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/18432996/ PubMed] #&nbsp; #English A. C. et al. . Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3504050/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/23185243/ PubMed] #&nbsp; #Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at&nbsp;[http://arxiv.org/pdf/1303.3997v2.pdf http://arxiv.org/pdf/1303.3997v2.pdf]&nbsp;(2013). #&nbsp; #Soderlund C., Bomhoff M. & Nelson W. M. SyMAP v3.4: a turnkey synteny system with application to plant genome. Nucleic Acids Res. 39, e68 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3105427/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/21398631/ PubMed] #&nbsp; #Chaisson M. J. & Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3572422/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/22988817/ PubMed] #&nbsp; #Simpson J. T. et al. . ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2694472/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/19251739/ PubMed] #&nbsp; #Fan L. & Yao Y. G. MitoTool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations. Mitochondrion 11, 351–356 (2011). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20933105/ PubMed] #&nbsp; #McKenna A. et al. . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2928508/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20644199/ PubMed] #&nbsp; #Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc148217/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/9862982/ PubMed] #&nbsp; #Jurka J. et al. . Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/16093699/ PubMed] #&nbsp; #Bedell J. A., Korf I. & Gish W. MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics 16, 1040–1041 (2000). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/11159316/ PubMed] #&nbsp; #Abrusán G., Grundmann N., DeMester L. & Makalowski W. TEclass--a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009). -&nbsp;[https://pubmed.ncbi.nlm.nih.gov/19349283/ PubMed] #&nbsp; #Camacho C. et al. . BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2803857/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/20003500/ PubMed] #&nbsp; #Slater G. S. & Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc553969/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/15713233/ PubMed] #&nbsp; #Stanke M. et al. . AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1538822/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/16845043/ PubMed] #&nbsp; #Jiang Z., Hubley R., Smit A. & Eichler E. E. DupMasker: a tool for annotating primate segmental duplications. Genome Res. 18, 1362–1368 (2008). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2493431/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/18502942/ PubMed] #&nbsp; #Harris R. S. Improved Pairwise Alignment of Genomic DNA (PhD thesis, Pennsylvania State Univ (2007). #&nbsp; #Kent W. J. et al. . The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc186604/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/12045153/ PubMed] #&nbsp; #Earl D. et al. . Alignathon: a competitive assessment of whole-genome alignment methods. Genome Res. 24, 2077–2089 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4248324/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/25273068/ PubMed] #&nbsp; #Li H. et al. . The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2723002/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/19505943/ PubMed] #&nbsp; #Cingolani P. et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3679285/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/22728672/ PubMed] #&nbsp; #Choi Y., Sims G. E., Murphy S., Miller J. R. & Chan A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3466303/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/23056405/ PubMed] #&nbsp; #Zhang B., Kirov S. & Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1160236/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/15980575/ PubMed] #&nbsp; #Landrum M. J. et al. . ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3965032/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24234437/ PubMed] #&nbsp; #MacDonald J. R., Ziman R., Yuen R. K. C., Feuk L. & Scherer S. W. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992 (2014). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3965079/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/24174537/ PubMed] #&nbsp; #Wang J. et al. . dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum. Mutat. 27, 323–329 (2006). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1855216/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/16511833/ PubMed] #&nbsp; #Mills R. E. et al. . Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011). -&nbsp;[http://www.ncbi.nlm.nih.gov/pmcgov/27882922/articles/pmc3077050/ PMC]&nbsp;-&nbsp;[https://pubmed.ncbi.nlm.nih.gov/2129337227882922/ PubMed]  &nbsp; &nbsp;)
</div>
&nbsp;
394
edits

Navigation menu